Advertisement

Plasma-catalytic hybrid process for CO2 methanation: optimization of operation parameters

  • M. Mikhail
  • B. Wang
  • R. Jalain
  • S. Cavadias
  • M. Tatoulian
  • S. Ognier
  • M. E. Gálvez
  • P. Da Costa
Article
  • 40 Downloads

Abstract

The present study focuses on the hybrid plasma catalytic process for CO2 methanation. This plasma-catalytic process, based on the combination of a DBD plasma and Ni/CeZrO2 catalyst, has several advantages over conventional catalysis: it operates at ambient conditions and requires no external heating. An optimization of the process considering the effect of the different operational parameters such as voltage, GHSV, catalyst mass, flow rate, discharge length, is herein presented. Moreover, a spectroscopic study, aiming to understand the mechanism of the reaction, is also showed. At temperatures around 270 °C and under adiabatic conditions, CO2 conversion rates of about 80% were measured, with a CH4 selectivity greater than 95%.

Keywords

Plasma-catalysis CO2 valorization Methanation Mechanism Optimization 

References

  1. 1.
    Wang W, Wang S, Ma X, Gong J (2011) Chem Soc Rev 40:3703–3727.  https://doi.org/10.1039/C1CS15008A CrossRefPubMedGoogle Scholar
  2. 2.
    Xiaoding X, Moulijn JA (1996) Energy Fuels 10:305–325.  https://doi.org/10.1021/ef9501511 CrossRefGoogle Scholar
  3. 3.
    Perry RJ, O’Brien MJ (2011) Energy Fuels 25:1906–1918.  https://doi.org/10.1021/ef101564h CrossRefGoogle Scholar
  4. 4.
    Wang J, Huang L, Yang R, Zhang Z, Wu J, Gao Y, Wang Q, O’Hare D, Zhong Z (2014) Energy Environ Sci 7:3478–3518.  https://doi.org/10.1039/c4ee01647e CrossRefGoogle Scholar
  5. 5.
    McDonough W, Braungart M, Anastas P, Zimmerman J (2003) Environ Sci Technol 37:434A–441A.  https://doi.org/10.1021/es0326322 CrossRefPubMedGoogle Scholar
  6. 6.
    Jessop PG, Joo F, Tai CC (2004) Coord Chem Rev 2004248:2425–2442.  https://doi.org/10.1016/j.ccr.2004.05.019 CrossRefGoogle Scholar
  7. 7.
    Qin Z, Zhou Y, Jiang Y, Liu Z, Ji H (2017) Recent advances in heterogeneous catalytic hydrogenation of CO2 to methane. N Adv Hydrog Process Fundam Appl 2:5.  https://doi.org/10.5772/65407 CrossRefGoogle Scholar
  8. 8.
    Bai M, Zhang Z, Bai M, Bai X, Gao H (2008) Plasma Chem Plasma Process 28:405–414.  https://doi.org/10.1007/s11090-008-9132-4 CrossRefGoogle Scholar
  9. 9.
    Zeng Y, Wang G (2005) Chem Eng Oil Gas 34:89–93.  https://doi.org/10.1039/b614276a CrossRefGoogle Scholar
  10. 10.
    Bonura G, Cordaro M, Cannilla C, Arena F, Frusteri F (2014) Appl Catal B 152–153:152–161.  https://doi.org/10.1016/j.apcatb.2014.01.035 CrossRefGoogle Scholar
  11. 11.
    R-w Liu, Z-z Qin, H-b Ji, Su T-m (2013) Ind Eng Chem Res 52:16648–16655.  https://doi.org/10.1021/ie401763g CrossRefGoogle Scholar
  12. 12.
    Beuls A, Swalus C, Jacquemin M, Heyen G, Karelovic A, Ruiz P (2012) Appl Catal B 113–114:2–10.  https://doi.org/10.1016/j.apcatb.2011.02.033 CrossRefGoogle Scholar
  13. 13.
    Ocampo F, Louis B, Roger A-C (2009) Appl Catal Gen 369:90–96.  https://doi.org/10.1016/j.apcata.2009.09.005 CrossRefGoogle Scholar
  14. 14.
    Cerveny L (1986) Catalytic hydrogenation. In: Delmon B, Yates JT (eds) Studies in surface science and catalysis. Elsevier, Amsterdam. ISBN 0-444-42682-5Google Scholar
  15. 15.
    Krämer M et al (2009) The impact of dopants on the activity and selectivity of a Ni-based methanation catalyst. Appl Catal A 369:42–52.  https://doi.org/10.1016/j.apcata.2009.08.027 CrossRefGoogle Scholar
  16. 16.
    Nizio M, Albarazi A, Cavadias S, Amouroux J, Galvez ME, Da Costa P (2016) Int J Hydrog Energy 41:11584–11592.  https://doi.org/10.1016/j.ijhydene.2016.02.020 CrossRefGoogle Scholar
  17. 17.
    Jwa E, Lee SB, Lee HW, Mok YS (2013) Fuel Process Technol 108:89–93.  https://doi.org/10.1016/j.fuproc.2012.03.008 CrossRefGoogle Scholar
  18. 18.
    Aldana PAU et al (2013) Catal Today 215:201–207.  https://doi.org/10.1016/j.cattod.2013.02.019 CrossRefGoogle Scholar
  19. 19.
    Peeters FJJ, Sanden MC (2015) Plasma Sources Sci Technol 24(1):015016.  https://doi.org/10.1016/j.cej.2016.02.047 CrossRefGoogle Scholar
  20. 20.
    Laux CO et al (2003) Plasma Sources Sci Technol 12:125.  https://doi.org/10.1088/0963-0252/12/2/301 CrossRefGoogle Scholar
  21. 21.
    Gaydon AG, Pearse RWB (1976) The identification of molecular spectra. Springer, Dordrecht. ISBN 978-94-009-5760-2Google Scholar
  22. 22.
    Zhang J-F et al (2009) Chin Phys Lett 26:035203.  https://doi.org/10.1088/0256-307X/26/3/035203 CrossRefGoogle Scholar
  23. 23.
    Fridman A (2008) Plasma chemistry. Cambridge University Press, Cambridge.  https://doi.org/10.1017/CBO9780511546075 CrossRefGoogle Scholar
  24. 24.
    Manley TC (1943) The electric characteristics of the ozonator discharge. Trans Electrochem Soc 84:83–96.  https://doi.org/10.1149/1.3071556 CrossRefGoogle Scholar
  25. 25.
  26. 26.
    Valdivia-Barrientos R et al (2006) Plasma Sources Sci Technol 15:237.  https://doi.org/10.1088/0963-0252/15/2/008 CrossRefGoogle Scholar
  27. 27.
    Zhang Y-P, Ma P-S, Zhu X, Liu C-J, Shen Y (2004) Catal Commun 5:35–39.  https://doi.org/10.1016/j.catcom.2003.11.006 CrossRefGoogle Scholar
  28. 28.
    Chen HL, Lee HM, Chen SH, Chao Y, Chang MB (2008) Catal B 85:1–9.  https://doi.org/10.1016/j.apcatb.2008.06.021 CrossRefGoogle Scholar
  29. 29.
    Amouroux J, Cavadias S (2017) J Phys D 50:46550.  https://doi.org/10.1088/1361-6463/aa8b56 CrossRefGoogle Scholar
  30. 30.
    Brooks KP et al (2007) Chem Eng Sci 62:1161–1170.  https://doi.org/10.1016/j.ces.2006.11.020 CrossRefGoogle Scholar
  31. 31.
    Snoeckx R, Bogaerts A (2016) Chem Soc Rev 46:5805–5863.  https://doi.org/10.1039/c6cs00066e CrossRefGoogle Scholar
  32. 32.
    Schaaf T, Grünig J, Schuster MR, Rothenfluh T, Orth A (2014) Energy Sustain Soc 4:1–14.  https://doi.org/10.1186/s13705-014-0029-1 CrossRefGoogle Scholar
  33. 33.
    Kogelschatz U (2003) Plasma Chem Plasma Process 23:1.  https://doi.org/10.1023/A:1022470901385 CrossRefGoogle Scholar
  34. 34.
    Abate S, Mebrahtu C, Giglio E, Deorsola F, Bensaid S, Perathoner S, Pirone RN, Centi G (2016) Ind Eng Chem Res 55:4451–4460.  https://doi.org/10.1021/acs.iecr.6b00134 CrossRefGoogle Scholar
  35. 35.
    Jiang T, Li Y, Liu C-J, Xu G-H, Eliasson B, Xue B (2002) Catal Today 72:229–235.  https://doi.org/10.1016/S0920-5861(01)00497-7 CrossRefGoogle Scholar
  36. 36.
    Chung W-C, Chang M-B (2016) Energy Convers Manag 124:305–314.  https://doi.org/10.1016/j.enconman.2016.07.023 CrossRefGoogle Scholar
  37. 37.
    Beuls A et al (2012) Appl Catal B 113–114:2–10.  https://doi.org/10.1016/j.apcatb.2011.02.033 CrossRefGoogle Scholar
  38. 38.
    Neyts EC, Bogaerts A (2014) J Phys D 47:224010.  https://doi.org/10.1088/0022-3727/47/22/224010 CrossRefGoogle Scholar
  39. 39.
    Herzberg G (1944) Atomic spectra and atomic structure. Dover Publications, New York. ISBN 0-486-60115-3Google Scholar
  40. 40.
    Choe SJ et al (2005) Bull Korean Chem Soc 26:1682–1688.  https://doi.org/10.5012/bkcs.2005.26.11.168 CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • M. Mikhail
    • 1
    • 2
  • B. Wang
    • 1
    • 2
  • R. Jalain
    • 1
  • S. Cavadias
    • 2
  • M. Tatoulian
    • 2
  • S. Ognier
    • 2
  • M. E. Gálvez
    • 1
  • P. Da Costa
    • 1
  1. 1.Sorbonne Université, Institut Jean le Rond d’Alembert, CNRS UMR7190Saint-Cyr l’EcoleFrance
  2. 2.Institut de Recherche de Chimie Paris, UMR 8247 (CNRS – Chimie ParisTech)ParisFrance

Personalised recommendations