Advertisement

Reaction Kinetics, Mechanisms and Catalysis

, Volume 126, Issue 1, pp 453–461 | Cite as

Controlled synthesis of nickel phosphide nanoparticles with pure-phase Ni2P and Ni12P5 for hydrogenation of nitrobenzene

  • Ping LiuEmail author
  • Zhi-Xiang Zhang
  • Samuel Woojoo Jun
  • Ya-Lu Zhu
  • Yong-Xin Li
Article
  • 45 Downloads

Abstract

The controlled synthesis of transition metal phosphides has been pursued to obtain excellent performances in application. Herein, we report a simple and effective method to synthesize nickel phosphide nanoparticles with target phases. Pure-phase nickel phosphide nanoparticles were obtained in different crystalline states (Ni2P and Ni12P5), and the crystalline phase of nickel phosphide could be controlled by varying the reaction conditions such as the temperature and duration of thermal treatment or the ratio between Ni and P. In addition, the nickel phosphide particles after thermal treatment maintained their sizes without serious agglomeration. In the hydrogenation of nitrobenzene, the phosphides with pure-phase (Ni2P or Ni12P5) and high crystallinity showed high catalytic activities. This proves that the crystalline phase of nickel phosphide plays an important role in the catalytic activity.

Keywords

Nickel phosphide Ni2Ni12P5 Catalytic hydrogenation 

Notes

Acknowledgements

Authors thank the National Natural Science Foundation of China (No. 21406019), Postdoctoral Science Foundation of China (No. 2016M601794), Postdoctoral Science Foundation of Jiangsu province, Jiangsu Shuangchuang Program, and Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University for financial support.

Supplementary material

11144_2018_1496_MOESM1_ESM.docx (19 kb)
Supplementary material 1 (DOCX 18 kb)

References

  1. 1.
    Yang L, Li X, Wang AJ, Prins R, Wang Y, Chen YY, Duan XP (2014) J Catal 317:144–152CrossRefGoogle Scholar
  2. 2.
    Peroni M, Lee I, Huang X, Barath E, Gutierrez OY, Lercher JA (2017) ACS Catal 7:6331–6341CrossRefGoogle Scholar
  3. 3.
    Chung DY, Jun SW, Yoon G, Kim H, Yoo JM, Lee K-S, Kim T, Shin H, Shin H, Kwon SG, Kang K, Hyeon T, Sung Y-E (2017) J Am Chem Soc 139:6669–6674CrossRefGoogle Scholar
  4. 4.
    Guo HN, Chen CC, Chen K, Cai HC, Chang XY, Liu S, Li WQ, Wang YJ, Wang CY (2017) J Mater Chem A 5:22316–22324CrossRefGoogle Scholar
  5. 5.
    Bai J, Xi BJ, Mao HZ, Lin Y, Ma XJ, Feng JK, Xiong SL (2018) Adv Mater 30:1802310CrossRefGoogle Scholar
  6. 6.
    Moon J-S, Kim E-G, Lee Y-K (2014) J Catal 311:144–152CrossRefGoogle Scholar
  7. 7.
    Li HM, Lu SQ, Sun JY, Pei JJ, Liu D, Xue YR, Mao JJ, Zhu W, Zhuang ZB (2018) Chem Eur J 24:11748–11754CrossRefGoogle Scholar
  8. 8.
    Wang XD, Zhou HP, Zhang DK, Pi MY, Feng JJ, Chen SJ (2018) J Power Sources 387:1–8CrossRefGoogle Scholar
  9. 9.
    Liu P, Wei T, Xu J, Xue B, Zhang W, Li Y (2013) Reac Kinet Mech Cat 109:105–115CrossRefGoogle Scholar
  10. 10.
    Ma JJ, Ni SB, Lv XH, Yang XL, Zhang LL (2014) Mater Lett 133:94–96CrossRefGoogle Scholar
  11. 11.
    Aso K, Hayashi A, Tatsumisago M (2011) Inorg Chem 50:10820–10824CrossRefGoogle Scholar
  12. 12.
    Layan Savithra GH, Muthuswamy E, Bowker RH, Carrillo BA, Bussell ME, Brock SL (2013) Chem Mater 25:825–833CrossRefGoogle Scholar
  13. 13.
    Senevirathne K, Burns AW, Bussell ME, Brock SL (2007) Adv Funct Mater 17:3933–3939CrossRefGoogle Scholar
  14. 14.
    Badari CA, Lonyi F, Drotar E, Kaszonyi A, Valyon J (2015) Appl Catal B 164:48–60CrossRefGoogle Scholar
  15. 15.
    Li D, Senevirathne K, Aquilina L, Brock SL (2015) Inorg Chem 54:7968–7975CrossRefGoogle Scholar
  16. 16.
    Pan Y, Liu Y, Zhao J, Yang K, Liang J, Liu D, Hu W, Liu D, Liu Y, Liu C (2015) J Mater Chem A 3:1656–1665CrossRefGoogle Scholar
  17. 17.
    Muthuswamy E, Savithra GHL, Brock SL (2011) ACS Nano 5:2402–2411CrossRefGoogle Scholar
  18. 18.
    Yun G, Guan Q, Li W (2017) RSC Adv 7:8677–8687CrossRefGoogle Scholar
  19. 19.
    Deng Y, Zhou Y, Yao Y, Wang J (2013) New J Chem 37:4083–4088CrossRefGoogle Scholar
  20. 20.
    Wang B, Huang X, Zhu Z, Huang H, Dai J (2012) Appl Nanosci 2:423–427CrossRefGoogle Scholar
  21. 21.
    Liu P, Chang W-T, Liang X-Y, Wang J, Li Y-X (2016) Catal Commun 76:42–45CrossRefGoogle Scholar
  22. 22.
    Iino A, Cho A, Takagaki A, Kikuchi R, Oyama ST (2014) J Catal 311:17–27CrossRefGoogle Scholar
  23. 23.
    Huang Z, Chen Z, Chen Z, Lv C, Meng H, Zhang C (2014) ACS Nano 8:8121–8129CrossRefGoogle Scholar
  24. 24.
    Liu P, Chen Y-L, Zhang Z-X, Liu H-F, Li Y-X (2018) Reac Kinet Mech Cat 125:595–603CrossRefGoogle Scholar
  25. 25.
    Prekob Á, Muránszky G, Hutkai ZG, Pekker P, Kristály F, Fiser B, Viskolcz B, Vanyorek L (2018) Reac Kinet Mech Cat 125:583–593CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Ping Liu
    • 1
    • 2
    Email author
  • Zhi-Xiang Zhang
    • 1
  • Samuel Woojoo Jun
    • 3
  • Ya-Lu Zhu
    • 1
  • Yong-Xin Li
    • 1
  1. 1.Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical EngineeringChangzhou UniversityChangzhouChina
  2. 2.Jiangsu Kailin Ruiyang Chemical Co.LtdChangzhouChina
  3. 3.Materials Sciences DivisionLawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations