Skip to main content
Log in

Cu2O modified g-C3N4 as an effective catalyst for the synthesis of propargylamines: experimental, quantum mechanical mechanistic and kinetic study

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In this research, graphite-like carbon nitride (g-C3N4) was prepared via a common method i.e. one-step thermal polycondensation of urea and then modified by copper (I) oxide. After that, the as-prepared g-C3N4/Cu2O composite was used as the superior catalyst for effective coupling reaction between arylaldehydes, alkynes and secondary amines in the formation of wide range of propargylamine derivatives. The new, efficient catalyst was characterized using different techniques including Fourier transform infrared spectroscopy (FT-IR), energy-dispersive X-ray spectroscopy (EDX), thermogravimetric analysis (TGA), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The reactions were performed in nearly low reaction times, and the products were obtained in moderate to high yields. At the end of the transformation, using by simple filtration, the catalyst was separated from reaction mixture and reused for four times with minimum loss of activity. The catalyst is simple to prepare and shows higher catalytic activity than some recently reported catalysts. Moreover, the potential energy surface (PES) of the reaction has been studied by density functional theory (DFT) and it was realized that the first step of the reaction, that is, separation of acetylenic hydrogen shows a primary kinetic isotope effect and hence is the rate determining step of the reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Scheme 2
Scheme 3

Similar content being viewed by others

References

  1. Salam N, Sinha A, Roy AS, Mondal P, Jana NR, Islam SM (2014) Synthesis of silver–graphene nanocomposite and its catalytic application for the one-pot three-component coupling reaction and one-pot synthesis of 1, 4-disubstituted 1, 2, 3-triazoles in water. RSC Adv 4:10001–10012

    Article  CAS  Google Scholar 

  2. Samai S, Nandi GC, Singh M (2010) An efficient and facile one-pot synthesis of propargylamines by three-component coupling of aldehydes, amines, and alkynes via C-H activation catalyzed by NiCl2. Tetrahedron Lett 51:5555–5558

    Article  CAS  Google Scholar 

  3. Peshkov VA, Pereshivko OP, Van der Eycken EV (2012) A walk around the A3-coupling. Chem Soc Rev 41:3790–3807

    Article  CAS  Google Scholar 

  4. Pin-Hua L, Lei W (2005) Mercurous chloride catalyzed mannich condensation of terminal alkynes with secondary amines and aldehydes. Chin J Chem 23:1076–1080

    Article  Google Scholar 

  5. Yi L, Zhan L, Yingde C (2015) An efficient nanoparticle-supported and magnetically recoverable copper(I) catalyst for synthesis of furans from Ene-yne-ketone. Chin J Chem 33:175–181

    Article  Google Scholar 

  6. Babji P, Roa VL (2016) Catalytic reduction of 4-nitrophenol to 4-aminophenol by using Fe2O3-Cu2O-TiO2 nanocomposite. Int J Chem Stud 4:123–127

    CAS  Google Scholar 

  7. Woo H, Park J, Park JC, Park S, Lee JM, Park KH (2016) Facile synthesis of hybrid Cu2O/Pd-Fe2O3 nanocatalysts for C–H arylation of 4-nitroimidazoles. RSC Adv 6:36211–36217

    Article  CAS  Google Scholar 

  8. Gawande MB, Goswami A, Felpin FX, Asefa T, Huang X, Silva R, Zou X, Zboril R, Varma RS (2016) Cu and Cu-based nanoparticles: synthesis and applications in catalysis. Chem Rev 116:3722–3811

    Article  CAS  Google Scholar 

  9. Ong WJ, Tan LL, Ng YH, Yong ST, Chai SP (2016) Graphitic carbon nitride(g-C3N4)- based photocatalysts for artificial synthesis and environmentally remediation: are we step cleser to achieving sustainabillity. Chem Rev 116:715–7329

    Article  Google Scholar 

  10. Cao S, Yu J (2014) g-C3N4-based photocatalysts for hydrogen generation. J Phys Chem Lett 5:2101–2107

    Article  CAS  Google Scholar 

  11. Gao D, Xu Q, Zhang J, Yang Z, Si M, Yan Z, Xue D (2014) Defect-related ferromagnetism in ultrathin metal-free gC3N4 nanosheets. Nanoscale 6:2577–2581

    Article  CAS  Google Scholar 

  12. Yan SC, Li ZS, Zou ZG (2009) Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir 25:10397–10401

    Article  CAS  Google Scholar 

  13. Xu J, Shang JK, Jiang Q, Wang Y, Li YX (2016) Facile alkali-assisted synthesis of g-C3N4 materials and their high-performance catalytic application in solvent-free cycloaddition of CO2 to epoxides. RSC Adv 6:55382–55392

    Article  CAS  Google Scholar 

  14. Chen B, Wang L, Dai W, Shang S, Lv Y, Gao S (2015) Metal-free and solvent-free oxidative coupling of amines to imines with mesoporous carbon from macrocyclic compounds. ACS Catal 5:2788–2794

    Article  CAS  Google Scholar 

  15. Ding G, Han H, Jiang T, Wu T, Han B (2014) Heterogeneous copper-catalyzed hydroxylation of aryl iodides under air conditions. Chem Commun 50:9072–9075

    Article  CAS  Google Scholar 

  16. Sharma P, Sasson Y (2017) A photoactive catalyst Ru–gC3N4 for hydrogen transfer reaction of aldehydes and ketones. Green Chem 19:844–852

    Article  CAS  Google Scholar 

  17. Wang L, Yu M, Wu C, Deng N, Wang C, Yao X (2016) Synthesis of Ag/g-C3N4 composite as highly efficient visible-light photocatalyst for oxidative amidation of aromatic aldehydes. Adv Synth Catal 358:2631–2641

    Article  CAS  Google Scholar 

  18. Datta K, Reddy B, Ariga K, Vinu A (2010) Gold nanoparticles embedded in a mesoporous carbon nitride stabilizer for highly efficient three-component coupling reaction. Angew Chem Int Ed 49:5961–5965

    Article  CAS  Google Scholar 

  19. Verma S, Nasir Baig R, Nadagouda MN, Varma RS (2016) Photocatalytic C-H activation of hydrocarbons over VO@g-C3N4. ACS Sustain Chem Eng 4:2333–2336

    Article  CAS  Google Scholar 

  20. Wang Y, Yao J, Li H, Su D, Antonietti M (2011) Highly selective hydrogenation of phenol and derivatives over a Pd@ carbon nitride catalyst in aqueous media. J Am Chem Soc 133:2362–2365

    Article  CAS  Google Scholar 

  21. Sun J, Fu Y, He G, Sun X, Wang X (2015) Green Suzuki-Miyaura coupling reaction catalyzed by palladium nanoparticles supported on graphitic carbon nitride. Appl Catal B 165:661–667

    Article  CAS  Google Scholar 

  22. Verma S, Nasir Baig R, Nadagouda MN, Varma RS (2017) Hydroxylation of Benzene via C–H activation using bimetallic CuAg@g-C3N4. ACS Sustainable Chem Eng 5:3637–3640

    Article  CAS  Google Scholar 

  23. Su Q, Yao X, Cheng W, Zhang S (2017) Boron-doped melamine-derived carbon nitrides tailored by ionic liquids for catalytic conversion of CO2 into cyclic carbonates. Green Chem 19:2957–2965

    Article  CAS  Google Scholar 

  24. Nandi D, Siwal S, Mallick K (2017) A carbon nitride supported copper nanoparticle composite: a heterogeneous catalyst for the N-arylation of hetero-aromatic compounds. New J Chem 41:3082–3088

    Article  CAS  Google Scholar 

  25. Li Y, Gong Y, Xu X, Zhan P, Li H, Wang Y (2012) A practical and benign synthesis of amines through Pd@ mpg-C3N4 catalyzed reduction of nitriles. Catal Commun 28:9–12

    Article  CAS  Google Scholar 

  26. Wei Z, Chen Y, Wang J, Su D, Tang M, Mao S, Wang Y (2016) Cobalt encapsulated in N-doped graphene layers: an efficient and stable catalyst for hydrogenation of quinoline compounds. ACS Catal 6:5816–5822

    Article  CAS  Google Scholar 

  27. Sabaqian S, Nemati F, Nahzomi HT, Heravi MM (2017) Palladium acetate supported on amidoxime-finctionlized magnetic cellulose: synthesis, DFT study and application in suzuki reaction. Carbohydr Polym 177:165–177

    Article  CAS  Google Scholar 

  28. Rangraz Y, Nemati F, Elhampour A (2018) Diphenyl diselenide immobilized onmagnetic nanoparticles: a novel and retrievable heterogeneous catalyst in the oxidation of aldehydes under mild and green conditions. J Colloid Interface Sci 509:485–494

    Article  CAS  Google Scholar 

  29. Sabaqian S, Nemati F, Heravi MM, Nahzomi HT (2017) Copper(I) iodide supported on modified cellulose- based nano-magnetite composite as a biodegradable catalyst for the synthesis of 1,2,3-triazoles. Appl Organomet Chem 31:e3660

    Article  Google Scholar 

  30. Elhampour A, Nemati F, Heravi MM (2017) Nano Ag-doped magnetic-Fe3O4 @ mesoporous TiO2 Core-shell hollow spheres: synthesis and enhanced catalytic activity in A3 and KA2 coupling reactions. Mon Chem 148:1793–1805

    Article  CAS  Google Scholar 

  31. Elhampour A, Nemati F, Nahzomi HT, Mohagheghi V (2017) Magentic nanopartice-suppored tetrazole-functionalized palladium catalyst: synthesis, DFT study and application for Sonogashira and Heck cross-couling reactions. Res Chem Intermed 43:9763

    Article  Google Scholar 

  32. Mirhosseyni MS, Nemati F, Elhampour A (2017) Hollow Fe3O4@ DA-SO3H: an efficient and reusable heterogenous nano-magnetic acid catalyst for synthesis of dihydropyridine and dioxodecahydroacridine derivatives. J Iran Chem Soc 14:791–801

    Article  CAS  Google Scholar 

  33. Osanlou F, Nemati F, Sabaqian S (2017) An eco-friendly and magnetized biopolymer cellulose- based heterogeneous acid catalyst for facile synthesis of functionalized pyrimido[4,5-b] quinolines and indenofused pyrido [2,3-d] pyrimidines in water. Res Chem Intermed 43:2159–2174

    Article  CAS  Google Scholar 

  34. Elhampour A, Nemati F (2016) Nano-Fe3O4@TiO2/Cu2O core-shell composite: a convenient magnetic separable catalyst for A3 and KA2 Coupling. J Chin Chem Soc 63:653–659

    Article  CAS  Google Scholar 

  35. Nemati F, Elhampour A, Farrokhi H, Natanzi MB (2015) Cu2O/nano-CuFe2O4: a novel and recyclable magnetic catalyst for three-component coupling of carbonyl compounds–alkynes–amines under solvent-free condition. Catal Commun 66:15–20

    Article  CAS  Google Scholar 

  36. Liu J, Zhang T, Wang Z, Dawson G, Chen W (2011) Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity. J Mater Chem 21:14398–14401

    Article  CAS  Google Scholar 

  37. Yang Q, Wang W, Zhao Y, Zhu J, Zhu Y, Wang L (2015) Metal-free mesoporous carbon nitride catalyze the Friedel-Crafts reaction by activation of benzene. RSC Adv 5:54978–54984

    Article  CAS  Google Scholar 

  38. Peng B, Zhang S, Yang S, Wang H, Yu H, Zhang S, Peng F (2014) Synthesis and characterization of g C3N4/Cu2O composite catalyst with enhanced photocatalytic activity under visible light irradiation. Mater Res Bull 56:19–24

    Article  CAS  Google Scholar 

  39. Ganesh Babu S, Karvembu R (2011) CuO nanoparticles: a simple, effective, ligand free, and reusable heterogeneous catalyst for N-arylation of benzimidazole. Ind Eng Chem Res 50:9594–9600

    Article  CAS  Google Scholar 

  40. Yan SC, Li ZS, Zou ZG (2009) Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Longmuir 25:10397–10401

    Article  CAS  Google Scholar 

  41. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti Correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  42. Mirsafaei R, Heravi MM, Ahmadi S, Hosseinnejad T (2016) Synthesis and properties of novel reusable nano-ordered KIT-5-N-sulfamic acid as a heterogeneous catalyst for solvent-free synthesis of 2,4,5-triaryl-1H-imidazoles. Chem Pap 70:418–429

    Article  CAS  Google Scholar 

  43. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  44. Shiroudi A, Deleuze MS, Canneaux S (2014) Theoretical study of the oxidation mechanism of naphtalene initiated by hydroxyl radicals: the OH-addition pathway. J Phys Chem A 118:4593–4610

    Article  CAS  Google Scholar 

  45. Nasluzou VA, Gutsev GL, Gryaznov VK (1990) Numerical models of potential in local density functional method. J Struct Chem 31:851–856

    Article  Google Scholar 

  46. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions excited states, and transition elements: two new funtionals and systematic testing of four M06- class functionals and 12 other functionals. Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  47. Bone RGA, Bader RFW (1990) Identifynig and analyzing intermolecular bonding interactions in Wan der Waals molecules. J Phys Chem 100:10892–10911

    Article  Google Scholar 

  48. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas K, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.1, Gaussian Inc., Wallingford

  49. Vafaeezadeh M, Fattahi A (2014) Calculating the acidity of silica supported alkyl sulfonic acids considering the matrix effect: a DFT study. Phosphorous Sulfur Relat Elements 189:849–857

    Article  CAS  Google Scholar 

  50. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592

    Article  Google Scholar 

  51. Albaladejo MJ, Alonso F, Moglie Y, Yus M (2012) Three-component coupling of aldehydes, amines, and alkynes catalyzed by oxidized copper nanoparticles on titania. Eur J Org Chem 2012:3093–3104

    Article  CAS  Google Scholar 

  52. Vitthalrao SK, Maravanji SB (2018) Microwave- assisted copper(Ι)-catalyzed A3 coupling reaction: reactivity, substrate scope and the structural characterization of two coupling products. Catal Commun 103:78–82

    Article  Google Scholar 

  53. Sreedhar B, Surend P, Veda Prakash RW, Ravindra A (2005) Ultrasound-assisted rapid and efficient synthesis of propargylamines. Tetrahedron Lett 46:7019–7022

    Article  CAS  Google Scholar 

  54. Rosales J, Garcia JM, Avila E, Gonzalez T, Coll SD, Mavarez EO (2017) a novel tetramer copper(Ι) complex containing diallylphosphine ligands: synthesis, characterization and catalytic application in A3 coupling (aldehyde, amine, alkyne) reactions. Inorg Chim Acta 467:155–162

    Article  CAS  Google Scholar 

  55. Camarata JR, Rivera R, Fuentes F, Otero Y, Mavarez ED, Arce A, Garcia JM (2017) single and double A3 coupling (aldehyde-amine-alkyne) reaction catalyzed by an air stable copper(Ι)- phosphole complex. Tetrahedron Lett 58:4078–4081

    Article  Google Scholar 

  56. Zhang Q, Chena J-X, Gao W-X, Ding J-D, Wu H-Y (2010) Copper-catalyzed one-pot synthesis of propargylamines via C–H activation in PEG. Appl Organometal Chem 24:809–812

    Article  CAS  Google Scholar 

  57. Bariwal JB, Ermolat’ev DS, Van der Eycken EV (2010) efficient microwave-assisted synthesis of secondary alkylpropargylamines by using A3-coupling with primary aliphatic amines. Chem Eur J 16:3281–3284

    Article  CAS  Google Scholar 

  58. Park SB, Alper H (2005) An efficient synthesis of propargylamines via C–H activation catalyzed by copper(I) in ionic liquids. Chem Commun 10:1315–1317

    Article  Google Scholar 

  59. Chen M-T, Navarro O (2013) N-Heterocyclic carbene (NHC)–Copper(I) complexes as catalysts for A3 reactions. Synlett 24:1190–1192

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Semnan University Research Council for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Firouzeh Nemati.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 494 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karkeabadi, M., Nemati, F., Elhampour, A. et al. Cu2O modified g-C3N4 as an effective catalyst for the synthesis of propargylamines: experimental, quantum mechanical mechanistic and kinetic study. Reac Kinet Mech Cat 126, 265–282 (2019). https://doi.org/10.1007/s11144-018-1491-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-018-1491-0

Keywords

Navigation