Advertisement

Reaction Kinetics, Mechanisms and Catalysis

, Volume 126, Issue 1, pp 439–451 | Cite as

Hydrogenation of α,β-unsaturated aldehydes in aqueous media with a water-soluble Pd(II)-sulfosalan complex catalyst

  • Réka Gombos
  • Brigitta Nagyházi
  • Ferenc JoóEmail author
Article
  • 55 Downloads

Abstract

A water-soluble Pd(II)-salan complex Na2[Pd(HSS)] (HSS = sulfonated tetrahydrosalen or sulfosalan) was examined as a hydrolytically stable catalyst for hydrogenation of various aldehydes. Na2[Pd(HSS)] was found to be a highly selective catalyst towards hydrogenation of C=C over C=O bonds in cinnamaldehyde and crotonaldehyde (used as representative α,β-unsaturated aldehydes). Kinetic measurements revealed an important role of protonation/deprotonation of one of the phenolate oxygens of the N2O2 coordination framework in the reaction mechanism. Na2[Pd(HSS)] was also found an efficient catalyst for transfer hydrogenation of aldehydes from isopropanol in the presence of various bases. The results show, for the first time, the usefulness of easily accessible, hydrolytically stable Pd(II)-salan type catalysts in aqueous catalytic organometallic hydrogenations.

Keywords

Hydrogenation Palladium Salen-type ligands Transfer hydrogenation α,β-Unsaturated aldehydes 

Notes

Acknowledgements

The research was supported by the EU and co-financed by the European Regional Development Fund under the Projects GINOP-2.3.2-15-2016-00008 and GINOP-2.3.3-15-2016-00004.

References

  1. 1.
    Landaeta VR, López-Linares F, Sánchez-Delgado R, Bianchini C, Zanobini F, Peruzzini M (2009) J Mol Catal A 301:1–10CrossRefGoogle Scholar
  2. 2.
    Grosselin JM, Mercier C, Allmang G, Grass F (1991) Organometallics 10:2126–2133CrossRefGoogle Scholar
  3. 3.
    Joó F, Kovács J, Bényei AC, Kathó Á (1998) Angew Chem Int Ed 37:969–970CrossRefGoogle Scholar
  4. 4.
    Gombos R, Joó F (2014) Green Process Synth 3:127–132Google Scholar
  5. 5.
    Szatmári I, Papp G, Joó F, Kathó Á (2018) Inorg Chim A. 472:302–306CrossRefGoogle Scholar
  6. 6.
    Dio SD, Marchetti M, Paganelli S, Piccolo O (2011) Appl Catal A 399:205–210CrossRefGoogle Scholar
  7. 7.
    Wang D, Astruc D (2015) Chem Rev 115:6621–6686CrossRefGoogle Scholar
  8. 8.
    Samec JSM, Bäckvall JE, Andersson PG, Brandt P (2006) Chem Soc Rev 35:237–248CrossRefGoogle Scholar
  9. 9.
    Ajjou AN, Pinet JL (2004) J Mol Catal A 214:203–206CrossRefGoogle Scholar
  10. 10.
    Miecznikowski JR, Crabtree RH (2004) Polyhedron 23:2857–2872CrossRefGoogle Scholar
  11. 11.
    Farrar-Tobar RA, Wei Z, Jiao H, Hinze S, de Vries JG (2018) Chem Eur J 24:2725–2734CrossRefGoogle Scholar
  12. 12.
    Fekete M, Joó F (2007) Collect Czech Chem Commun 72:1037–1045CrossRefGoogle Scholar
  13. 13.
    Yang Z, Zhu Z, Luo R, Qiu X, Liu JT, Yang JK, Tang W (2017) Green Chem 19:3296–3301CrossRefGoogle Scholar
  14. 14.
    Bar R, Bar LK, Sasson Y, Blum J (1985) J Mol Catal 33:161–177CrossRefGoogle Scholar
  15. 15.
    Wu X, Liu J, Li X, Zanotti-Gerosa A, Hancock F, Vinci D, Ruan J, Xiao J (2006) Angew Chem Int Ed 45:6718–6722CrossRefGoogle Scholar
  16. 16.
    Baldino S, Facchetti S, Nedden HG, Zanotti-Gerosa A, Baratta W (2016) ChemCatChem 8:3195–3198CrossRefGoogle Scholar
  17. 17.
    Joó F, Bényei AC (1989) J Organomet Chem 363:C19–C21CrossRefGoogle Scholar
  18. 18.
    Bényei AC, Joó F (1990) J Mol Catal 58:151–163CrossRefGoogle Scholar
  19. 19.
    Pelagatti P (2007) In: de Vries JG, Elsevier C (eds) Handbook of homogeneous hydrogenation. Wiley, WeinheimGoogle Scholar
  20. 20.
    Sommovigo M, Alper H (1993) Tetrahedron Lett 34:59–62CrossRefGoogle Scholar
  21. 21.
    Zhang Y, Liao S, Xu Y, Yu D (2000) Appl Catal A 192:247–251CrossRefGoogle Scholar
  22. 22.
    Tin KC, Wong NB, Li RX, Li YZ, Hu JY, Li XJ (1999) J Mol Catal A 137:121–125CrossRefGoogle Scholar
  23. 23.
    Tin KC, Wong NB, Li RX, Li YZ, Li XJ (1999) J Mol Catal A 137:113–119CrossRefGoogle Scholar
  24. 24.
    Ernst S, Fuchs E, Yang X (2000) Micropor Mesopor Mater 35–36:137–142CrossRefGoogle Scholar
  25. 25.
    Kolodziej M, Drelinkiewicz A, Lalik E, Gurgul J, Duraczynska D, Kosydar R (2016) Appl Catal A 515:60–71CrossRefGoogle Scholar
  26. 26.
    Henrici-Olivé G, Olivé S (1974) Angew Chem Int Ed Eng 13:549–550CrossRefGoogle Scholar
  27. 27.
    Henrici-Olivé G, Olivé S (1975/1976) J Mol Catal 1:121–135Google Scholar
  28. 28.
    Ramadan AM (1996) Transit Met Chem 21:536–540CrossRefGoogle Scholar
  29. 29.
    Joó F (2001) Aqueous organometallic catalysis. Kluwer, DordrechtCrossRefGoogle Scholar
  30. 30.
    Voronova K, Purgel M, Udvardy A, Bényei AC, Kathó Á, Joó F (2013) Organometallics 32:4391–4440CrossRefGoogle Scholar
  31. 31.
    Sukanya D, Evans MR, Zeller M, Natarajan K (2007) Polyhedron 26:4314–4320CrossRefGoogle Scholar
  32. 32.
    Correia I, Dornyei A, Jakusch T, Avecilla F, Kiss T, Pessoa JC (2006) Eur J Inorg Chem 2006(14):2819–2830CrossRefGoogle Scholar
  33. 33.
    Sippola VO, Krause AOI (2003) J Mol Catal A 194:89–97CrossRefGoogle Scholar
  34. 34.
    Voronova K, Homolya L, Udvardy A, Bényei AC, Joó F (2014) Chemsuschem 7:2230–2239CrossRefGoogle Scholar
  35. 35.
    Papp G, Horváth H, Laurenczy G, Szatmári I, Kathó Á, Joó F (2013) Dalton Trans 42:521–529CrossRefGoogle Scholar
  36. 36.
    Scolaro C, Bergamo A, Brescacin L, Delfino R, Cocchietto M, Laurenczy G, Geldbach TJ, Sava G, Dyson PJ (2005) J Med Chem 48:4161–4171CrossRefGoogle Scholar
  37. 37.
    González B, Lorenzo-Luis P, Serrano-Ruiz M, Papp É, Fekete M, Csépke K, Ősz K, Kathó Á, Joó F, Romerosa A (2010) J Mol Catal A 326:15–20CrossRefGoogle Scholar
  38. 38.
    Kovács J, Joó F, Frohning CD (2005) Can J Chem 83:1033–1036CrossRefGoogle Scholar
  39. 39.
    Joó F, Tóth Z (1980) J Mol Catal 8:369–383CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Department of Physical ChemistryUniversity of DebrecenDebrecenHungary
  2. 2.MTA-DE Redox and Homogeneous Catalytic Reaction Mechanisms Research GroupDebrecenHungary

Personalised recommendations