Advertisement

Fabrication of Pd@N-doped porous carbon-TiO2 as a highly efficient catalyst for the selective hydrogenation of phenol to cyclohexanone in water

  • Jiuxuan Zhang
  • Yefei Liu
  • Hong Jiang
  • Rizhi Chen
Article
  • 69 Downloads

Abstract

A highly efficient catalyst with the structure of semiconductor–metal heterojunction for phenol hydrogenation in water was fabricated by loading the Pd nanoparticles on the N-doped porous carbon-TiO2 (CN-TiO2) materials, which was synthesized via the one-step carbonization of TiO2-contained ZIF-67. The microstructures of the as-prepared Pd@CN-TiO2 catalysts were investigated in detail and the catalytic properties were tested by the phenol hydrogenation under mild conditions. With increasing TiO2 amount, the charge transfer and specific surface area of Pd@CN-TiO2 initially increase and then reduce, thereby the catalytic performance show a similar regular pattern. The as-fabricated Pd@CN-TiO2 exhibits a superior catalytic performance than the Pd nanoparticles supported on TiO2 or CN separately, owing to their synergistic effect. When the parameters affecting the catalytic efficiency are optimized, the conversion of phenol and selectivity for cyclohexanone can even achieve 98% in pairs with a higher reaction rate of 0.45 mmol h−1. Furthermore, the Pd@CN-TiO2 shows stable performance in the recycling experiments.

Keywords

ZIF TiO2 Semiconductor N-doped carbon Phenol hydrogenation Cyclohexanone 

Notes

Acknowledgements

The financial supports from the National Key R&D Program (2016YFB0301503), the Jiangsu Province Natural Science Foundation for Distinguished Young Scholars (BK20150044), the National Natural Science Foundation (91534110, 21606124) and the Jiangsu Province Natural Science Foundation (BK20160978) of China are gratefully acknowledged.

Supplementary material

11144_2018_1482_MOESM1_ESM.docx (3.7 mb)
Supplementary material 1 (DOCX 3829 kb)

References

  1. 1.
    Sun F, Gao JH, Liu X, Yang YQ, Wu SH (2016) Chem Eng J 290:116–124CrossRefGoogle Scholar
  2. 2.
    Bear JC, McGettrick JD, Parkin IP, Dunnill CW, Hasell T (2016) Microporous Mesoporous Mater 232:189–195CrossRefGoogle Scholar
  3. 3.
    Santangeloa S, Piperopoulos E, Lanza M, Mastronardo E, Milone C (2015) Appl Catal A 505:487–493CrossRefGoogle Scholar
  4. 4.
    Sheng ZH, Shao L, Chen JJ, Bao WJ, Wang FB, Xia XH (2011) ACS Nano 5:4350–4358CrossRefGoogle Scholar
  5. 5.
    Yang DS, Bhattacharjya D, Inamdar S, Park J, Yu JS (2012) J Am Chem Soc 134:16127–16130CrossRefGoogle Scholar
  6. 6.
    Zhou J, Wu K, Wang WJ, Xu ZY, Wan HQ, Zheng SR (2014) Appl Catal A 470:336–343CrossRefGoogle Scholar
  7. 7.
    Yan SC, Li ZS, Zou ZG (2010) Langmuir 26:3894–3901CrossRefGoogle Scholar
  8. 8.
    Sun XJ, Zhang YW, Song P, Pan J, Zhuang L, Xu WL, Xing W (2013) ACS Catal 3:1726–1729CrossRefGoogle Scholar
  9. 9.
    Yang Z, Yao Z, Li GF, Fang GY, Nie HG, Liu Z, Zhou XM, Chen XA, Huang SM (2011) ACS Nano 6:205–211CrossRefGoogle Scholar
  10. 10.
    Jiang K, Xu K, Zou SZ, Cai WB (2014) J Am Chem Soc 136:4861–4864CrossRefGoogle Scholar
  11. 11.
    Lu CS, Wang MJ, Feng ZL, Qi YN, Feng F, Ma L, Zhang QF, Li XN (2017) Catal Sci Technol 7:1581–1589CrossRefGoogle Scholar
  12. 12.
    Guo DH, Shibuya RK, Akiba C, Saji S, Kondo T, Nakamura JJ (2016) Science 351:361–365CrossRefGoogle Scholar
  13. 13.
    Jin HY, Wang J, Su DF, Wei Z, Pang ZZ, Wang Y (2015) J Am Chem Soc 137:2688–2694CrossRefGoogle Scholar
  14. 14.
    Cai JX, Bennici S, Shen JY, Auroux A (2015) Reac Kinet Mech Cat 115:263–282CrossRefGoogle Scholar
  15. 15.
    Chen YZ, Cai GR, Wang YM, Xu Q, Yu SH, Jiang HL (2016) Green Chem 18:1212–1217CrossRefGoogle Scholar
  16. 16.
    Wang Y, Yao J, Li HR, Su DS, Antonietti M (2011) J Am Chem Soc 133:2362–2365CrossRefGoogle Scholar
  17. 17.
    Hu S, Qu ZY, Jiang H, Liu YF, Chen RZ (2018) Reac Kinet Mech Cat.  https://doi.org/10.1007/s11144-018-1438-5 CrossRefGoogle Scholar
  18. 18.
    Chen MF, Xuan HQ, Zheng XZ, Liu JY, Dong XP, Xi FN (2017) Electrochim Acta 238:269–277CrossRefGoogle Scholar
  19. 19.
    Olejniczak A, Leżańska M, Pacuła A, Nowak P, Włoch J, Łukaszewicz JP (2015) Carbon 91:200–214CrossRefGoogle Scholar
  20. 20.
    Do SG, Kwon WS, Rhee SW (2014) J Mater Chem C 2:4221CrossRefGoogle Scholar
  21. 21.
    Wang ZQ, Sun LX, Xu F, Peng XJ, Zou YJ, Chu HL, Ouyang LZ, Zhu M (2016) RSC Adv 6:1422–1427CrossRefGoogle Scholar
  22. 22.
    Yang QF, Wang J, Zhang WT, Liu FB, Yue XY, Liu YN, Yang M, Li ZH, Wang JL (2017) Chem Eng J 313:19–26CrossRefGoogle Scholar
  23. 23.
    Li B, Wen HM, Zhou W, Chen BL (2014) J Phys Chem Lett 5:3468–3479CrossRefGoogle Scholar
  24. 24.
    Li SW, Yang Z, Gao RM, Zhang G, Zhao JS (2018) Appl Catal B 221:574–583CrossRefGoogle Scholar
  25. 25.
    Shen J, Liu GP, Huang K, Li QQ, Guan KC, Li YK, Jin WQ (2016) J Membr Sci 513:155–165CrossRefGoogle Scholar
  26. 26.
    Phan A, Doonan CJ, Uribe-Romo FJ, Knobler CB, Keeffe MO, Yaghi OM (2010) Acc Chem Res 43:58–67CrossRefGoogle Scholar
  27. 27.
    Kaneti YV, Dutta S, Hossain MSA, Shiddiky MJA, Tung K, Shieh F, Tsung C, Wu KCW, Yamauchi Y (2017) Adv Mater 29:1700213CrossRefGoogle Scholar
  28. 28.
    Aijaz A, Masa J, Rösler C, Xia W, Weide P, Botz AJR, Fischer RA, Schuhmann W, Muhler M (2016) Angew Chem Int Ed 55:4087–4091CrossRefGoogle Scholar
  29. 29.
    Shen K, Chen L, Long J, Zhong W, Li YW (2015) ACS Catal 5:5264–5271CrossRefGoogle Scholar
  30. 30.
    Zhang LJ, Su ZX, Jiang FL, Yang LL, Qian JJ, Zhou YF, Li WM, Hong MC (2014) Nanoscale 6:6590–6602CrossRefGoogle Scholar
  31. 31.
    Zhang P, Sun F, Xiang ZH, Shen ZG, Yun J, Cao DP (2014) Energy Environ Sci 7:442–450CrossRefGoogle Scholar
  32. 32.
    Wang Z, Yan TT, Fang JH, Shi LY, Zhang DS (2016) J Mater Chem A 4:10858–10868CrossRefGoogle Scholar
  33. 33.
    Li XY, Jiang QQ, Dou S, Deng L, Huo J, Wang SY (2016) J Mater Chem A 4:15836–15840CrossRefGoogle Scholar
  34. 34.
    Ding SS, Zhang CH, Liu YF, Jiang H, Xing WH, Chen RZ (2017) J Ind Eng Chem 46:258–265CrossRefGoogle Scholar
  35. 35.
    Liu HZ, Jiang T, Han BX, Liang SG, Zhou YX (2009) Science 326:1250–1252CrossRefGoogle Scholar
  36. 36.
    Si JQ, Ouyang WB, Zhang YJ, Xu WT, Zhou JC (2017) Sci Rep 7:1254CrossRefGoogle Scholar
  37. 37.
    Torad NL, Hu M, Ishihara S, Sukegawa H, Belik AA, Imura M, Ariga K, Sakka Y, Yamauchi Y (2014) Small 10:2096–2107CrossRefGoogle Scholar
  38. 38.
    Li H, Liu J, Xie SH, Qiao MH, Dai WL, Lu YF, Li HX (2008) Adv Funct Mater 18:3235–3241CrossRefGoogle Scholar
  39. 39.
    Somboonthanakij S, Mekasuwandumrong O, Panpranot J, Nimmanwudtipong T, Strobel R, Pratsinis SE, Praserthdam P (2007) Catal Lett 119:346–352CrossRefGoogle Scholar
  40. 40.
    Cheng HY, Liu RX, Wang Q, Wu CY, Yu YC, Zhao FY (2012) New J Chem 36:1085–1090CrossRefGoogle Scholar
  41. 41.
    Li Y, Xu X, Zhang PF, Gong YT, Li HR, Wang Y (2013) RSC Adv 3:10973–10982CrossRefGoogle Scholar
  42. 42.
    Matos J, Corma A (2011) Appl Catal A 404:103–112CrossRefGoogle Scholar
  43. 43.
    Ping D, Zhao H, Dong X (2018) Reac Kinet Mech Cat 124:619–631CrossRefGoogle Scholar
  44. 44.
    Yang YF, Jia LT, Hou B, Li DB, Wang JG, Sun YH (2013) J Phys Chem C 118:268–277CrossRefGoogle Scholar
  45. 45.
    Ding SS, Zhang CH, Liu YF, Jiang H, Chen RZ (2015) Appl Surf Sci 425:484–491CrossRefGoogle Scholar
  46. 46.
    Lin KA, Chang HA (2016) Chem Eng J 296:243–251CrossRefGoogle Scholar
  47. 47.
    Wang L, Guan Y, Qiu X, Zhu H, Pan S, Yu M, Zhang Q (2017) Chem Eng J 326:945–955CrossRefGoogle Scholar
  48. 48.
    Chandra R, Mukhopadhyay S, Nath M (2016) Mater Lett 164:571–574CrossRefGoogle Scholar
  49. 49.
    Zhu LH, Zheng L, Du KQ, Fu H, Li YH, You GR, Chen BH (2013) RSC Adv 3:713–719CrossRefGoogle Scholar
  50. 50.
    Arrigo R, Schuster ME, Xie ZL, Yi YM, Wowsnick G, Sun LL, Hermann KE, Friedrich M, Kast P, Hävecker M, Knop-Gericke A, Schlögl R (2015) ACS Catal 5:2740–2753CrossRefGoogle Scholar
  51. 51.
    Zhao XM, Jin Y, Zhang FM, Zhong YJ, Zhu WD (2014) Chem Eng J 239:33–41CrossRefGoogle Scholar
  52. 52.
    Wang W, Jing WL, Sheng L, Chai D, Kang YM, Lei ZQ (2017) Appl Catal A 538:123–130CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Materials-Oriented Chemical EngineeringNanjing Tech UniversityNanjingPeople’s Republic of China

Personalised recommendations