Advertisement

FeNi3@SiO2 nanoparticles: an efficient and selective heterogeneous catalyst for the epoxidation of olefins and the oxidation of sulfides in the presence of meta-chloroperoxybenzoic acid at room temperature

  • Samaneh Ghiami
  • Mohammad Ali Nasseri
  • Ali Allahresani
  • Milad Kazemnejadi
Article

Abstract

In this article, FeNi3 nanoparticles were coated by silica and applied for green, inexpensive, selective and efficient epoxidation of alkenes as well as oxidation of sulfides to the corresponding sulfoxides. The oxidation was performed over FeNi3@SiO2 nanoparticles in the presence of meta-chloroperoxybenzoic acid as an oxygen source in dichloromethane at room temperature. High reaction conversion as well as oxidation product selectivity were obtained for both sulfoxide or epoxide compounds. The properties of the catalyst were studied by transmission electron microscopy, powder X-ray diffraction, Fourier transform infrared spectroscopy and vibrating sample magnetometer instruments. The heterogeneous nanocatalyst was magnetically recovered and could be reused in at least five consecutive runs without noticeable reactivity loss.

Keywords

FeNi3@SiO2 nanoparticles Heterogeneous Magnetically recoverable Olefins Sulfides 

Notes

Acknowledgements

The authors are grateful to the University of Birjand for financial support.

Supplementary material

11144_2018_1479_MOESM1_ESM.docx (568 kb)
Supplementary material 1 (DOCX 567 kb)

References

  1. 1.
    Kamal MS, Razzak SA, Hossain MM (2016) Catalytic oxidation of volatile organic compounds (VOCs)—a review. Atmos Environ 140:117–134CrossRefGoogle Scholar
  2. 2.
    Lee H, Lee HJ, Jeong J, Lee J, Park NB, Lee C (2015) Activation of persulfates by carbon nanotubes: oxidation of organic compounds by nonradical mechanism. Chem Eng J 266:28–33CrossRefGoogle Scholar
  3. 3.
    Chen CY, Tang C, Wang HF, Chen CM, Zhang X, Huang X, Zhang Q (2016) Oxygen reduction reaction on graphene in an electro-fenton system: In situ generation of H2O2 for the oxidation of organic compounds. Chemsuschem 9:1194–1199CrossRefPubMedCentralGoogle Scholar
  4. 4.
    Huang H, Xu Y, Feng Q, Leung DY (2015) Low temperature catalytic oxidation of volatile organic compounds: a review. Catal Sci Technol 5:2649–2669CrossRefGoogle Scholar
  5. 5.
    Kazemnejadi M, Shakeri A, Nikookar M, Shademani R, Mohammadi M (2018) Selective and metal-free epoxidation of terminal alkenes by heterogeneous polydioxirane in mild conditions. R Soc Open Sci 5:171541–171554CrossRefPubMedCentralGoogle Scholar
  6. 6.
    Kazemnejadi M, Shakeri A, Nikookar M, Mohammadi M, Esmaeilpour M (2017) Co(II) Schiff base complex decorated on polysalicylaldehyde as an efficient, selective, heterogeneous and reusable catalyst for epoxidation of olefins in mild and self-coreductant conditions. Res Chem Intermed 43:6889–6910CrossRefGoogle Scholar
  7. 7.
    Taguchi M, Nagasawa Y, Yamaguchi E, Tada N, Miura T, Itoh A (2016) One-pot epoxidation of alkenes using aerobic photoperoxidation of toluenes. Tetrahedron Lett 57:230–232CrossRefGoogle Scholar
  8. 8.
    Farokhi A, Hosseini-Monfared H (2016) A recyclable Mn–porphyrin catalyst for enantioselective epoxidation of unfunctionalized olefins using molecular dioxygen. New J Chem 40:5032–5043CrossRefGoogle Scholar
  9. 9.
    Brown JW, Nguyen QT, Otto T, Jarenwattananon NN, Glöggler S, Bouchard LS (2015) Epoxidation of alkenes with molecular oxygen catalyzed by a manganese porphyrin-based metal–organic framework. Catal Commun 59:50–54CrossRefGoogle Scholar
  10. 10.
    Huang Y, Liu Z, Gao G, Xiao G, Du A, Bottle S, Sarina S, Zhu H (2017) Stable copper nanoparticle photocatalysts for selective epoxidation of alkenes with visible light. ACS Catal 7:4975–4985CrossRefGoogle Scholar
  11. 11.
    Aghajani M, Monadi N (2017) Schiff base complex of Mo supported on iron oxide magnetic nanoparticles (Fe3O4) as recoverable nanocatalyst for the selective oxidation of sulfides. J Iran Chem Soc 14:963–975CrossRefGoogle Scholar
  12. 12.
    Carrasco CJ, Montilla F, Bobadilla L, Ivanova S, Odriozola JA, Galindo A (2015) Oxodiperoxomolybdenum complex immobilized onto ionic liquid modified SBA-15 as an effective catalysis for sulfide oxidation to sulfoxides using hydrogen peroxide. Catal Today 255:102–108CrossRefGoogle Scholar
  13. 13.
    Li G, Qian H, Jin R (2012) Gold nanocluster-catalyzed selective oxidation of sulfide to sulfoxide. Nanoscale 4:6714–6717CrossRefPubMedCentralGoogle Scholar
  14. 14.
    Rayati S, Khodaei E, Jafarian M, Wojtczak A (2017) Mn-Schiff base complex supported on magnetic nanoparticles: synthesis, crystal structure, electrochemical properties and catalytic activities for oxidation of olefins and sulfides. Polyhedron 133:327–335CrossRefGoogle Scholar
  15. 15.
    Wang PY, Zhou L, Zhou J, Wu ZB, Xue W, Song BA, Yang S (2016) Synthesis and antibacterial activity of pyridinium-tailored 2, 5-substituted-1, 3, 4-oxadiazole thioether/sulfoxide/sulfone derivatives. Bioorg Med Chem Lett 26:1214–1217CrossRefGoogle Scholar
  16. 16.
    Pitchen P, France CJ, McFarlane IM, Newton CG, Thompson DM (1994) Large scale asymmetric synthesis of a biologically active sulfoxide. Tetrahedron Lett 35:485–488CrossRefGoogle Scholar
  17. 17.
    Kazemnejadi M, Sardarian AR (2016) Ecofriendly synthesis of a heterogeneous polyvinyl alcohol immobilized copper (ii) Schiff base complex as an efficient, reusable catalyst for the one-pot three-component green preparation of 5-substituted 1H-tetrazoles under mild conditions. RSC Adv 6:91999–92006CrossRefGoogle Scholar
  18. 18.
    Kazemnejadi M, Nikookar M, Mohammadi M, Shakeri A, Esmaeilpour M (2018) Melamine-Schiff base/manganese complex with denritic structure: an efficient catalyst for oxidation of alcohols and one-pot synthesis of nitriles. J Colloid Interface Sci 527:298–314CrossRefPubMedCentralGoogle Scholar
  19. 19.
    Moeini N, Tamoradi T, Ghadermazi M, Ghorbani-Choghamarani A (2018) Anchoring Ni(II) on Fe3O4@tryptophan: a recyclable, green and extremely efficient magnetic nanocatalyst for one-pot synthesis of 5-substituted 1H-tetrazoles and chemoselective oxidation of sulfides and thiols. Appl Organomet Chem 32:e4445CrossRefGoogle Scholar
  20. 20.
    Bautista FM, Campelo JM, Luna D, Luque J, Marinas JM (2007) Vanadium oxides supported on TiO2-sepiolite and sepiolite: preparation, structural and acid characterization and catalytic behaviour in selective oxidation of toluene. Appl Catal A 325:336–344CrossRefGoogle Scholar
  21. 21.
    Jarupatrakorn J, Tilley TD (2002) Silica-supported, single-site titanium catalysts for olefin epoxidation. A molecular precursor strategy for control of catalyst structure. J Am Chem Soc 124:8380–8388CrossRefGoogle Scholar
  22. 22.
    Kang J, Cheng K, Zhang L, Zhang Q, Ding J, Hua W, Lou Y, Zhai Q, Wang Y (2011) Mesoporous zeolite-supported ruthenium nanoparticles as highly selective Fischer-Tropsch catalysts for the production of C5–C11 isoparaffins. Angew Chem Int Edit 50:5200–5203CrossRefGoogle Scholar
  23. 23.
    Rodriguez NM, Kim MS, Baker RTK (1994) Carbon nanofibers: a unique catalyst support medium. J Phys Chem 98:13108–13111CrossRefGoogle Scholar
  24. 24.
    Kazemnejadi M, Shakeri A, Mohammadi M, Tabefam M (2017) Direct preparation of oximes and Schiff bases by oxidation of primary benzylic or allylic alcohols in the presence of primary amines using Mn(III) complex of polysalicylaldehyde as an efficient and selective heterogeneous catalyst by molecular oxygen. J Iran Chem Soc 14:1917–1933CrossRefGoogle Scholar
  25. 25.
    Esmaeilpour M, Sardarian AR, Javidi J (2012) Schiff base complex of metal ions supported on superparamagnetic Fe3O4@ SiO2 nanoparticles: an efficient, selective and recyclable catalyst for synthesis of 1, 1-diacetates from aldehydes under solvent-free conditions. Appl Catal A 445:359–367CrossRefGoogle Scholar
  26. 26.
    Maleki A, Rahimi R, Maleki S (2016) Efficient oxidation and epoxidation using a chromium (VI)-based magnetic nanocomposite. Environ Chem Lett 14:195–199CrossRefGoogle Scholar
  27. 27.
    Niederberger M, Garnweitner G, Buha J, Polleux J, Ba J, Pinna N (2006) Nonaqueous synthesis of metal oxide nanoparticles: review and indium oxide as case study for the dependence of particle morphology on precursors and solvents. J Sol-Gel Sci Technol 40:259–266CrossRefGoogle Scholar
  28. 28.
    Azarkamanzad Z, Farzaneh F, Maghami M, Simpson J, Azarkish M (2018) Synthesis, characterization and immobilization of a novel mononuclear vanadium (V) complex on modified magnetic nanoparticles as catalyst for epoxidation of allyl alcohols. Appl Organomet Chem 32:e4168CrossRefGoogle Scholar
  29. 29.
    Neamtu M, Nadejde C, Hodoroaba VD, Schneider RJ, Verestiuc L, Panne U (2018) Functionalized magnetic nanoparticles: synthesis, characterization, catalytic application and assessment of toxicity. Sci Rep 8:6278CrossRefPubMedCentralGoogle Scholar
  30. 30.
    Shiri L, Ghorbani-Choghamarani A, Kazemi M (2017) Synthesis and characterization of tribenzyl ammonium-tribromide supported on magnetic Fe3O4 nanoparticles: a robust magnetically recoverable catalyst for the oxidative coupling of thiols and oxidation of sulfides. Res Chem Intermed 43:2707–2724CrossRefGoogle Scholar
  31. 31.
    Rostamnia S, Gholipour B, Liu X, Wang Y, Arandiyan H (2018) NH2-coordinately immobilized tris(8-quinolinolato) iron onto the silica coated magnetite nanoparticle: Fe3O4@ SiO2-FeQ3 as a selective Fenton-like catalyst for clean oxidation of sulfides. J Colloid Interface Sci 511:447–455CrossRefPubMedCentralGoogle Scholar
  32. 32.
    Hajjami M, Sharifirad F, Gholamian F (2017) Synthesis of Fe3O4@ SiO2@ DOPisatin-Ni(II) and Cu(II) nanoparticles: highly efficient catalyst for the synthesis of sulfoxides and disulfides. Appl Organomet Chem 31:e3844CrossRefGoogle Scholar
  33. 33.
    Ghorbani-Choghamarani A, Tahmasbi B, Moradi P, Havasi N (2016) Cu–S-(propyl)-2-aminobenzothioate on magnetic nanoparticles: highly efficient and reusable catalyst for synthesis of polyhydroquinoline derivatives and oxidation of sulfides. Appl Organomet Chem 30:619–625CrossRefGoogle Scholar
  34. 34.
    Karimpour T, Safaei E, Karimi B, Lee YI (2018) Iron(III) amine bis(phenolate) complex immobilized on silica-coated magnetic nanoparticles: a highly efficient catalyst for the oxidation of alcohols and sulfides. ChemCatChem 10:1889–1899CrossRefGoogle Scholar
  35. 35.
    Eftekhari-Sis B, Akbari M, Akbari A, Amini M (2017) Vanadium(V) and Tungsten(VI) oxoperoxo-complexes anchored on Fe3O4 magnetic nanoparticles: versatile and efficient catalysts for the oxidation of alcohols and sulfides. Catal Lett 147:2106–2115CrossRefGoogle Scholar
  36. 36.
    Hajjami M, Kolivand S (2016) New metal complexes supported on Fe3O4 magnetic nanoparticles as recoverable catalysts for selective oxidation of sulfides to sulfoxides. Appl Organomet Chem 30:282–288CrossRefGoogle Scholar
  37. 37.
    Hu Y, Ma W, Tao M, Zhang X, Wang X, Wang X, Chen L (2018) Decorated-magnetic-nanoparticle-supported bromine as a recyclable catalyst for the oxidation of sulfides. J Appl Polym Sci 135:46036CrossRefGoogle Scholar
  38. 38.
    Zohreh N, Hosseini SH, Pourjavadi A, Soleyman R, Bennett C (2016) Immobilized tungstate on magnetic poly (2-ammonium ethyl acrylamide): a high loaded heterogeneous catalyst for selective oxidation of sulfides using H2O2. J Ind Eng Chem 44:73–81CrossRefGoogle Scholar
  39. 39.
    Moradi-Shoeili Z, Zare M, Akbayrak S, Özkar S (2017) Enhanced reactivity in a heterogeneous oxido-peroxido molybdenum(VI) complex of salicylidene 2-picoloyl hydrazone in catalytic epoxidation of olefins. Transit Met Chem 42:357–363CrossRefGoogle Scholar
  40. 40.
    Babaei B, Bezaatpour A, Amiri M, Szunerits S, Boukherroub R (2018) Magnetically reusable MnFe2O4 nanoparticles modified with oxo-peroxo Mo(VI) Schiff-base complexes: a high efficiency catalyst for olefin epoxidation under solvent-free conditions. ChemistrySelect 3:2877–2881CrossRefGoogle Scholar
  41. 41.
    Bezaatpour A, Khatami S, Amiri M (2016) Development of the catalytic reactivity of an oxo–peroxo Mo(VI) Schiff base complex supported on supermagnetic nanoparticles as a reusable green nanocatalyst for selective epoxidation of olefins. RSC Adv 6:27452–27459CrossRefGoogle Scholar
  42. 42.
    Li Z, Yang C, Ma Y, Li P, Guan J, Kan Q (2017) Facile fabrication of magnetic MoO2–Salen-modified graphene-based catalyst for epoxidation of alkenes. Appl Organomet Chem 31:e3742CrossRefGoogle Scholar
  43. 43.
    Asgharpour Z, Farzaneh F, Abbasi A (2016) Synthesis, characterization and immobilization of a new cobalt(II) complex on modified magnetic nanoparticles as catalyst for epoxidation of alkenes and oxidation of activated alkanes. RSC Adv 6:95729–95739CrossRefGoogle Scholar
  44. 44.
    Bepari RA, Bharali P, Das BK (2017) Controlled synthesis of α-and γ-Fe2O3 nanoparticles via thermolysis of PVA gels and studies on α-Fe2O3 catalyzed styrene epoxidation. J Saudi Chem Soc 21:S170–S178CrossRefGoogle Scholar
  45. 45.
    Dias LD, Carrilho RM, Henriques CA, Piccirillo G, Fernandes A, Rossi LM, Filipa Ribeiro M, Calvete MJ, Pereira MM (2018) A recyclable hybrid manganese(III) porphyrin magnetic catalyst for selective olefin epoxidation using molecular oxygen. J Porphyr Phthalocyanines 22:331–341CrossRefGoogle Scholar
  46. 46.
    Nasseri MA, Allahresani A, Raissi H (2014) Mild oxidation of alkenes catalyzed by Fe3O4/SiO2 nanoparticles. Reac Kinet Mech Cat 112:397–408CrossRefGoogle Scholar
  47. 47.
    Liao Q, Tannenbaum R, Wang ZL (2006) Synthesis of FeNi3 alloyed nanoparticles by hydrothermal reduction. J Phys Chem B 110:14262–14265CrossRefPubMedCentralGoogle Scholar
  48. 48.
    Bayat A, Shakourian-Fard M, Ehyaei N, Hashemi MM (2015) Silver nanoparticles supported on silica-coated ferrite as magnetic and reusable catalysts for oxidant-free alcohol dehydrogenation. RSC Adv 5:22503–22509CrossRefGoogle Scholar
  49. 49.
    Tang C, Li X, Li Z, Hao J (2017) Interfacial hydrogen bonds and their influence mechanism on increasing the thermal stability of nano-SiO2-modified meta-aramid fibres. Polymers 9:504–522CrossRefGoogle Scholar
  50. 50.
    Bartlett PD (1950) Recent work on the mechanisms of peroxide reactions. Rec Chem Prog 11:47–51Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of SciencesUniversity of BirjandBirjandIran

Personalised recommendations