Advertisement

Reaction Kinetics, Mechanisms and Catalysis

, Volume 125, Issue 2, pp 675–688 | Cite as

Impact of chloride ions on the oxidative coupling of methane over Li/SnO2 catalyst

  • Fei Cheng
  • Jian Yang
  • Liang Yan
  • Jun Zhao
  • Huahua Zhao
  • Huanling Song
  • Lingjun Chou
Article
  • 70 Downloads

Abstract

The catalytic performance for the oxidative coupling of methane (OCM) over chloride-containing Li/SnO2 was investigated experimentally and the mechanism of OCM was further suggested. Cl ions exerted remarkable influence on the catalytic performance of Li/SnO2, with that at 750 °C displaying the highest catalytic activity (18.5% C2 yield) for OCM. The prepared catalysts were characterized with N2 physisorption, X-ray diffraction, O2-temperature programmed desorption, X-ray photoelectron spectroscopy and H2 temperature programmed reduction measurement to elucidate the effect of Cl ions on its properties and catalytic performance. The results showed that the enhanced OCM catalytic activity of the chloride-containing Li/SnO2 catalysts compared with pure Li/SnO2 catalyst may originate from the higher concentration of anion vacancies, more rapid oxygen mobility and improved redox ability of tin. In addition, characterization by CO2-temperature programmed desorption, infrared spectroscopy and O2 frequency pulse reactions results illustrated that adding Cl ions improved performance of Li/SnO2, which not only reduced strong basic sites to prevent the formation of poisoning carbonate, but also facilitated the formed chloromethane to convert quickly to ethylene.

Keywords

OCM Active oxygen Chloride-containing Lithium oxide Pulse reaction 

Notes

Acknowledgements

This work was supported by the “Strategic Priority Research Program” of the Chinese Academy of Sciences (No. XDA09030101) and the Petro China Innovation Foundation (No. 2016D-5007-0506).

Supplementary material

11144_2018_1477_MOESM1_ESM.docx (512 kb)
Supplementary material 1 (DOCX 512 kb)

References

  1. 1.
    Keller GE, Bhasin MM (1982) J Catal 73:9–19CrossRefGoogle Scholar
  2. 2.
    Lee J, Oyama S (1988) Catal Rev 30:249–280CrossRefGoogle Scholar
  3. 3.
    Palermo A, Vazquez JPH, Lee A, Tikhov M, Lambert R (1998) J Catal 177:259–266CrossRefGoogle Scholar
  4. 4.
    Machocki A, Jezior R (2008) Chem Eng J 137:643–652CrossRefGoogle Scholar
  5. 5.
    Zheng W, Cheng DG, Chen FQ, Zhan XL (2010) J Nat Gas Chem 19:515–521CrossRefGoogle Scholar
  6. 6.
    Park JH, Lee DW, Im SW, Lee YH, Suh DJ, Jun KW, Lee KY (2012) Fuel 94:433–439CrossRefGoogle Scholar
  7. 7.
    Uzunoglu C, Leba A, Yildirim R (2017) Appl Catal A 547:22–29CrossRefGoogle Scholar
  8. 8.
    Shubin A, Zilberberg I, Ismagilov I, Matus E, Kerzhentsev M, Ismagilov Z (2018) Mol Catal 445:307–315CrossRefGoogle Scholar
  9. 9.
    Wang DZ, Wen SL, Chen J, Zhang SY, Li FQ (1994) Phys Rev B 49:14282–14285CrossRefGoogle Scholar
  10. 10.
    Xie J, Chen L, Au CT, Yin SF (2015) Catal Commun 66:30–33CrossRefGoogle Scholar
  11. 11.
    Goudarzi F, Izadbakhsh A (2017) Reac Kinet Mech Cat 121:539–553CrossRefGoogle Scholar
  12. 12.
    Rorf J, Roos JA, Vertman LJ, Vanommen JG (1989) Appl Catal 56:119–135CrossRefGoogle Scholar
  13. 13.
    Nibbelke RH, Scheerova J, Decroon MHJN, Marin GB (2010) J Catal 156:106–119CrossRefGoogle Scholar
  14. 14.
    Lunsford JH, Hinson PG, Rosynek MP, Shi CL, Xu MT, Yang XM (1994) J Catal 147:301–310CrossRefGoogle Scholar
  15. 15.
    Raouf F, Taghizadeh M, Yousefi M (2013) Reac Kinet Mech Cat 110:373–385CrossRefGoogle Scholar
  16. 16.
    Wang DJ, Rosynek MP, Lunsford JH (1995) J Catal 151:155–167CrossRefGoogle Scholar
  17. 17.
    Hong JH, Yoon KJ (2001) Appl Catal A 205:253–262CrossRefGoogle Scholar
  18. 18.
    Hiyoshi N, Ikeda T (2015) Fuel Process Technol 133:29–34CrossRefGoogle Scholar
  19. 19.
    Wang Y, Arandiyan H, Tahini HA, Scott J, Tan X, Dai HX, Gale JD, Rohl AL, Smith SC, Amal R (2017) Nat Commun 8:1–7CrossRefGoogle Scholar
  20. 20.
    Song JJ, Sun YN, Ba RB, Huang SS, Zhao YH, Zhang J, Sun YH, Zhu Y (2015) Nanoscale 7:2260–2264CrossRefGoogle Scholar
  21. 21.
    Choudhary VR, Rane VH (1994) J Chem Soc Faraday Trans 90:3357–3365CrossRefGoogle Scholar
  22. 22.
    Kus S, Otremba M, Taniewski M (2003) Fuel 82:1331–1338CrossRefGoogle Scholar
  23. 23.
    Hou YH, Han WC, Xia WS, Wan HL (2015) ACS Catal 5:1663–1674CrossRefGoogle Scholar
  24. 24.
    Voskresenskaya EN, Roguleva VG, Anshits AG (1995) Catal Rev Sci Eng 37:101–143CrossRefGoogle Scholar
  25. 25.
    Arandiyan H, Dai HX, Deng JG, Wang Y, Sun HY, Xie SH, Bai BY, Liu YX, Ji KM, Li JH (2014) J Phys Chem C 118:14913–14928CrossRefGoogle Scholar
  26. 26.
    Arandiyan H, Scott J, Wang Y, Dai HX, Sun HY, Amal R (2016) ACS Appl Mater Interfaces 8:2457–2463CrossRefGoogle Scholar
  27. 27.
    Wang X, Liu D, Li J, Zhen J, Zhang H (2015) NPG Asia Mater 7:e158CrossRefGoogle Scholar
  28. 28.
    Chen J, Arandiyan H, Gao X, Li J (2015) Catal Surv Asia 19:140–171CrossRefGoogle Scholar
  29. 29.
    Long RQ, Wan HL (1997) Appl Catal A 159:45–58CrossRefGoogle Scholar
  30. 30.
    Huang P, Zhao YH, Zhang J, Zhu Y, Sun Y (2013) Nanoscale 5:10844–10848CrossRefGoogle Scholar
  31. 31.
    Ding WP, Ding WP, Chen Y, Fu XC (1994) Catal Lett 23:69–78CrossRefGoogle Scholar
  32. 32.
    Ferreira VJ, Tavares P, Figueiredo JL, Faria JL (2013) Catal Commun 42:50–53CrossRefGoogle Scholar
  33. 33.
    Kang M, Park ED, Kim JM, Yie JE (2007) Appl Catal A 327:261–269CrossRefGoogle Scholar
  34. 34.
    Peng XD, Richards DA, Stair PC (1990) J Catal 121:99–109CrossRefGoogle Scholar
  35. 35.
    Lee MR, Park MJ, Jeon W, Choi JW, Suh YW, Suh DJ (2012) Fuel Process Technol 96:175–182CrossRefGoogle Scholar
  36. 36.
    Sun J, Thybaut JW, Marin GB (2008) Catal Today 137:90–102CrossRefGoogle Scholar
  37. 37.
    Fleischer V, Steuer R, Parishan S, Schomäcker R (2016) J Catal 341:91–103CrossRefGoogle Scholar
  38. 38.
    Andersen PJ, Kung HH (1992) J Phys Chem 96:3114–3123CrossRefGoogle Scholar
  39. 39.
    Delavari S, Amin NAS, Mazaheri H (2014) Reac Kinet Mech Cat 113:557–573CrossRefGoogle Scholar
  40. 40.
    Osada Y, Koike S, Fukushima T, Ogasawara S (1990) Appl Catal 59:59–74CrossRefGoogle Scholar
  41. 41.
    Dai HX, Ng CF, Au CT (1999) Catal Lett 57:115–120CrossRefGoogle Scholar
  42. 42.
    Stranick MA, Moskwa A (1993) Surf Sci Spectra 2:45–49CrossRefGoogle Scholar
  43. 43.
    Klingenberg B, Vannice MA (1996) Chem Mater 8:2755–2768CrossRefGoogle Scholar
  44. 44.
    Aika K, Moriyama T, Takasaki N, Iwamatsu E (1986) J Chem Soc Chem Commun 18:1210–1211CrossRefGoogle Scholar
  45. 45.
    Xu XL, Liu F, Han X, Wu YY, Liu WM, Zhang RB, Zhang N, Wang X (2016) Catal Sci Technol 6:5280–5291CrossRefGoogle Scholar
  46. 46.
    Sun GB, Hidajat K, Wu XS, Kawi S (2008) Appl Catal B 81:303–312CrossRefGoogle Scholar
  47. 47.
    Wu X, Kawi S (2009) Catal Today 148:251–259CrossRefGoogle Scholar
  48. 48.
    Wu X, Kawi S (2010) Cryst Growth Des 10:1833–1841CrossRefGoogle Scholar
  49. 49.
    Shiow SL, Chun LC, Dong JC, Chia CC (2002) Water Res 36:3009–3014CrossRefGoogle Scholar
  50. 50.
    Rani RS, Lakshmanan A (2016) J Lumin 174:63–69CrossRefGoogle Scholar
  51. 51.
    Ohtsuka Y, Kuwabara M, Tomita A (1989) Appl Catal 47:307–315CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhouPeople’s Republic of China
  2. 2.University of Chinese Academy of SciencesBeijingPeople’s Republic of China
  3. 3.Suzhou Research Institute of LICPChinese Academy of SciencesSuzhouPeople’s Republic of China

Personalised recommendations