Reaction Kinetics, Mechanisms and Catalysis

, Volume 126, Issue 1, pp 103–117 | Cite as

Keggin-type heteropolyacids supported on sol–gel oxides as catalysts for the dehydration of glycerol to acrolein

  • E. KralevaEmail author
  • H. Atia


Glycerol dehydration to acrolein was performed at temperatures of 220–300 °C over Keggin-type heteropolyacids (H4SiW12O40·xH2O and H4PVMo11O40·xH2O), supported on sol–gel prepared alumina, titania, zirconia and three-mixed oxide AlTiZr. The supports and catalysts were characterized by nitrogen adsorption, XRD, IR—pyridine adsorption and EPR spectroscopy. Tungsten based heteropolyacids showed outstanding performance and stability. Acrolein was always the predominant product with a maximum selectivity of 75% at complete conversion over silicotungstic acid supported over zirconia and titania. Textural properties of samples affected their catalytic performance during the test reaction.


Heteropolyacids Effect of supports Catalysts Dehydration Glycerol Acrolein 



This work was made with the financial support of the Bulgarian Ministry of Education, Fund “SCIENTIFIC RESEARCH” (Project № POSTDOC_09_0002/2010). E. K is indebted to the M.E. for a postdoctoral grant in Leibniz-Institut für Katalyse e.V (LIKAT Rostock), Germany.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Corma A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107(6):2411–2502CrossRefGoogle Scholar
  2. 2.
    Katryniok B, Paul S, Dumeignil F (2013) Recent developments in the field of catalytic dehydration of glycerol to acrolein. ACS Catal 3(8):1819–1834CrossRefGoogle Scholar
  3. 3.
    Zhou C, Beltramini JN, Fan Y, Lu G (2008) Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals. Chem Soc Rev 37(3):527–549CrossRefGoogle Scholar
  4. 4.
    Corma A, Huber G, Sauvanaud L, Oconnor P (2008) Biomass to chemicals: catalytic conversion of glycerol/water mixtures into acrolein, reaction network. J Catal 257:163–171CrossRefGoogle Scholar
  5. 5.
    Estevez R, Lopez-Pedrajas S, Blanco-Bonilla F, Luna D, Bautista F (2015) Production of acrolein from glycerol in liquid phase on heterogeneous catalysts. Chem Eng J 282:179–186CrossRefGoogle Scholar
  6. 6.
    Chai SH, Wang H-P, Liang Y, Xu B-Q (2008) Sustainable production of acrolein: gas-phase dehydration of glycerol over 12-tungstophosphoric acid supported on ZrO2 and SiO2. Green Chem 10:1087–1093CrossRefGoogle Scholar
  7. 7.
    Chai SH, Wang HP, Liang Y, Xu BQ (2009) Sustainable production of acrolein: preparation and characterization of zirconia-supported 12-tungstophosphoric acid catalyst for gas-phase dehydration of glycerol Appl. Catal A 353:213–222CrossRefGoogle Scholar
  8. 8.
    Mallik S, Dash S, Parida K, Mohapatra B (2006) Synthesis, characterization, and catalytic activity of phosphomolybdic acid supported on hydrous zirconia. J Colloid Interface Sci 300:237–243CrossRefGoogle Scholar
  9. 9.
    Kraleva E, Saladino M, Matassa R, Caponetti E, Enzo S, Spojakina A (2011) Phase formation in mixed TiO2-ZrO2 oxides prepared by sol-gel method. J Struct Chem 52:340–348CrossRefGoogle Scholar
  10. 10.
    Alhanash A, Kozhevnikova E, Kozhevnikov I (2010) Gas-phase dehydration of glycerol to acrolein catalysed by caesium heteropoly salt. Appl Catal A 378:11–18CrossRefGoogle Scholar
  11. 11.
    Brückner A (2005) Killing three birds with one stone—simultaneous operando EPR/UV-vis/Raman spectroscopy for monitoring catalytic reactions. Chem Commun 13:1761–1763CrossRefGoogle Scholar
  12. 12.
    Yang J, Ferreira J (1998) Inhibitory effect of the Al2O3–SiO2 mixed additives on the anatase–rutile phase transformation. Mater Lett 36:320–324CrossRefGoogle Scholar
  13. 13.
    Lingaiah N, Mohan Reddy K, Nagaraju P, Sai Prasad P, Wachs I (2008) Influence of vanadium location in titania supported vanadomolybdophosphoric acid catalysts and its effect on the oxidation and ammoxidation functionalities. J Phys Chem C 112:8294–8300CrossRefGoogle Scholar
  14. 14.
    Ferreira P, Fonseca IM, Ramos AM, Vital J, Castanheiro J (2010) Valorisation of glycerol by condensation with acetone over silica-included heteropolyacids. Appl Catal B 98:94–99CrossRefGoogle Scholar
  15. 15.
    Ulín C, De Los Reyes J, Escobar J, Barrera M, Cortes-Jacome M (2010) Mesoporous (ZrO2–TiO2)/Al2O3 ternary carriers as hydrodesulfurization catalysts support. J Phys Chem Solids 71:1004–1012CrossRefGoogle Scholar
  16. 16.
    Misono M (2001) Unique acid catalysis of heteropolycompounds (heteropolyoxometalates) in the solid state. Chem Commun 13:1141–1152CrossRefGoogle Scholar
  17. 17.
    Mizuno N, Han W, Kurdo T (1998) Selective oxidation of ethane, propane, and isobutane catalyzed by copper-containing Cs2.5H1.5PVMo11O40 under oxygen-poor conditions. J Catal 178:391–394CrossRefGoogle Scholar
  18. 18.
    Brückner A, Scholz G, Heidemann D, Schneider M, Herein D, Bentrup U, Kant M (2007) Structural evolution of H4PVMo11O40·xH2O during calcination and isobutane oxidation: new insights into vanadium sites by a comprehensive in situ approach. J Catal 245:369–380CrossRefGoogle Scholar
  19. 19.
    Tsukuda E, Sato S, Takahashi R, Sodesawa T (2007) Production of acrolein from glycerol over silica-supported heteropoly acids. Catal Commun 8:1349–1353CrossRefGoogle Scholar
  20. 20.
    Atia H, Armbruster U, Martin A (2008) Dehydration of glycerol in gas phase using heteropoly acid catalysts as active compounds. J Catal 258:71–82CrossRefGoogle Scholar
  21. 21.
    Alhanash A, Kozhevnikova E, Kozhevnikov I (2010) Gas-phase dehydration of glycerol to acrolein catalysed by caesium heteropoly salt. Appl Catal A 378:11–18CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Leibniz-Institut für Katalyse e.V. an der Universität RostockRostockGermany

Personalised recommendations