Advertisement

Reaction Kinetics, Mechanisms and Catalysis

, Volume 125, Issue 2, pp 663–673 | Cite as

Shape-controlled synthesis of MnOx–CeO2 oxides and their catalytic performance in NO oxidation

  • Huaju Li
  • Qing Dong
  • Yanxing Li
  • Tan Guo
  • Jiadong Zhang
Article
  • 76 Downloads

Abstract

MnOx–CeO2 nanocubes and nanorods with the pure fluorite-type ceria crystalline structure have been synthesized, in order to investigate the effect of catalysts shape in NO oxidation. The results indicated that both of the nanomaterials growing from Ce(OH)3 nanorods nuclei, and higher hydrothermal temperature and alkali concentration facilitated the conversion of nanorods to nanocubes. During the synthesis process, manganese ions could incorporate into the ceria lattice without affecting its crystalline structure and growth mechanism. The morphology of this binary oxide determines NO oxidation rate, while the specific reaction rate on the reactive {100} planes was two times higher than that on the {111} planes, due to co-effect of the valence state of manganese ions, surface energy and the ratio of surface lattice oxygen species. The results could provide guidance for understanding of the importance of catalyst design in NO oxidation.

Keywords

MnOx–CeO2 nanocubes Nanorods Growth mechanism Shape effect NO oxidation 

Notes

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China (NSFC, No. 21203220), and Major Program of Natural Science Fund for Colleges and Universities in Jiangsu Province (No. 17KJA480002) for financial support.

Supplementary material

11144_2018_1451_MOESM1_ESM.doc (2.7 mb)
Supplementary material 1 (DOC 2761 kb)

References

  1. 1.
    Bensaid S, Russo N, Fino D (2013) Catal Today 216:57–63CrossRefGoogle Scholar
  2. 2.
    Chen WT, Chen KB, Wang MF, Weng SF, Lee CS, Lin MC (2010) Chem Commun 46:3286–3288CrossRefGoogle Scholar
  3. 3.
    Li H, Qi G, Tana X, Zhang X, Li W, Shen W (2011) Catal Sci Technol 1:1677–1682CrossRefGoogle Scholar
  4. 4.
    Zhang J, Kumagai H, Yamamura K, Ohara S, Takami S, Morikawa A, Shinjoh H, Kaneko K, Adschiri T, Suda A (2011) Nano Lett 11:361–364CrossRefGoogle Scholar
  5. 5.
    Si R, Flytzani-Stephanopoulos M (2008) Angew Chem Int Ed 47:2884–2887CrossRefGoogle Scholar
  6. 6.
    Chen YC, Chen KB, Lee CS, Lin MC (2009) J Phys Chem C 113:5031–5034CrossRefGoogle Scholar
  7. 7.
    Tang YH, Zhang H, Cui LX, Ouyang CY, Shi SQ, Tang WH, Li H, Lee JS, Chen LQ (2010) Phys Rev B 82:9Google Scholar
  8. 8.
    Yu X, Li J, Wei Y, Zhao Z, Liu J, Jin B, Duan A, Jiang G (2014) Ind Eng Chem Res 53:9653–9664CrossRefGoogle Scholar
  9. 9.
    Twigg MV (2007) Appl Catal B 70:2–15CrossRefGoogle Scholar
  10. 10.
    Gao Y, Wu X, Nord R, Härelind H, Weng D (2018) Catal Sci Technol 8:1621–1631CrossRefGoogle Scholar
  11. 11.
    Zhang H, Yuan S, Wang JL, Gong MC, Chen Y (2017) Chem Eng J 327:1066–1076CrossRefGoogle Scholar
  12. 12.
    Auvray X, Olsson L (2015) Appl Catal B 168–169:342–352CrossRefGoogle Scholar
  13. 13.
    Qi G, Li W (2015) Catal Today 258:205–213CrossRefGoogle Scholar
  14. 14.
    Kim CH, Qi G, Dahlberg K, Li W (2010) Science 327:1624–1627CrossRefGoogle Scholar
  15. 15.
    Xu J, Lu G, Guo Y, Guo Y, Gong XQ (2017) Appl Catal A 535:1–8CrossRefGoogle Scholar
  16. 16.
    Wu X, Lin F, Xu H, Weng D (2010) Appl Catal B 96:101–109CrossRefGoogle Scholar
  17. 17.
    Zeng Y, Jiang D, Wang Y, Zhang S, Zhong Q (2017) Reac Kinet Mech Cat 122:593–604CrossRefGoogle Scholar
  18. 18.
    Shen Q, Zhang L, Sun N, Wang H, Zhong L, He C, Wei W, Sun Y (2017) Chem Eng J 322:46–55CrossRefGoogle Scholar
  19. 19.
    Machida M, Uto M, Kurogi D, Kijima T (2000) Chem Mater 12:3158–3164CrossRefGoogle Scholar
  20. 20.
    Pan C, Zhang D, Shi L, Fang J (2008) Eur J Inorg Chem 2008:2429–2436CrossRefGoogle Scholar
  21. 21.
    Mai HX, Sun LD, Zhang YW, Si R, Feng W, Zhang HP, Liu HC, Yan CH (2005) J Phys Chem B 109:24380–24385CrossRefGoogle Scholar
  22. 22.
    Wu Q, Zhang F, Xiao P, Tao HS, Wang XZ, Hu Z, Lu YN (2008) J Phys Chem C 112:17076–17080CrossRefGoogle Scholar
  23. 23.
    Hirano M, Kato E (1996) J Am Ceram Soc 79:777–780CrossRefGoogle Scholar
  24. 24.
    Jia A-P, Deng Y, Hu G-S, Luo M-F, Lu J-Q (2016) Reac Kinet Mech Cat 117:503–520CrossRefGoogle Scholar
  25. 25.
    Li H, Qi G, Tana X, Zhang X, Huang X, Li W, Shen W (2011) Appl Catal B 103:54–61CrossRefGoogle Scholar
  26. 26.
    Gong L, Huang Z, Luo L, Zhang N (2014) Reac Kinet Mech Cat 111:489–504CrossRefGoogle Scholar
  27. 27.
    Ito K, Kishikawa K, Watajima A, Ikeue K, Machida M (2007) Catal Commun 8:2176–2180CrossRefGoogle Scholar
  28. 28.
    Stanek C, Tan A, Owens S, Grimes R (2008) J Mater Sci 43:4157–4162CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Jiangsu Provincial Engineering Laboratory for Advanced Materials of Salt Chemical Industry, Jiangsu Collaborative Innovation Center for Rock Salt and Concave Soil Resources Deep UtilizationHuaiyin Institute of TechnologyHuai’anPeople’s Republic of China
  2. 2.Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, School of Life Science and Food EngineeringHuaiyin Institute of TechnologyHuai’anPeople’s Republic of China

Personalised recommendations