Advertisement

Comparison of sulfonic acid loaded mesoporous silica in transesterification of triacetin

  • Mahuya Bandyopadhyay
  • Nao Tsunoji
  • Rajib Bandyopadhyay
  • Tsuneji Sano
Article
  • 21 Downloads

Abstract

Covalently linked sulfonic acid (–SO3H)-modified ordered mesoporous silicas MCM-48, MCM-41, and SBA-15 were synthesized, characterized and their catalytic activities were evaluated in the transesterification reaction of triacetin with methanol. Acid modified materials were prepared by oxidative transformation of immobilized functionalized unit, 3-mercaptopropyltriethoxysilane (MPTES) as a precursor. The mesophase and porosity of the catalysts were determined by means of X-ray diffraction and N2 adsorption techniques. No degradation of structure was observed in the preparation process. The acid concentrations were calculated using TG–DTA and NH3–TPD analysis. The acid modified materials were found to be active catalysts for the transesterification of triacetin with methanol. Especially, three-dimensional-MCM-48-SO3H showed better catalytic activity compared to its two-dimensional counterparts MCM-41 and SBA-15.

Keywords

Mesoporous silica MCM-48 Sulfonic acid Transesterification 

Supplementary material

11144_2018_1447_MOESM1_ESM.doc (1.4 mb)
Supplementary material 1 (DOC 1479 kb)

References

  1. 1.
    Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Science 279:548–552CrossRefGoogle Scholar
  2. 2.
    Stein A, Melde BJ, Schrodein RC (2000) Adv Mater 12:1403–1419CrossRefGoogle Scholar
  3. 3.
    Van Rhijn WM, De Vos DE, Bossaert WD, Jacobs PA (1998) Chem Commun 3:317–318CrossRefGoogle Scholar
  4. 4.
    Ide Y, Iwata M, Yagenji Y, Tsunoji N, Sohmiya M, Komaguchi K, Sano T, Sugahara Y (2016) J Mater Chem A 4:15829–15835CrossRefGoogle Scholar
  5. 5.
    Ziarani GM, Badiei A, Mousavi S, Lashgari N, Shahbazi A (2012) Chin J Catal 33:1832–1839CrossRefGoogle Scholar
  6. 6.
    Tsai CT, Pan YC, Ting CC, Vetrivel S, Chiang AST, Fey GTK, Kao HM (2009) Chem Commun 33:5018–5020CrossRefGoogle Scholar
  7. 7.
    Mondal J, Nandi M, Modak A, Bhaumik A (2012) J Mol Catal A 254:363–364Google Scholar
  8. 8.
    Wu B, Tong Z, Yuan X (2012) J Porous Mater 19:641–647CrossRefGoogle Scholar
  9. 9.
    Canilho N, Jacoby J, Pasc A, Carteret C, Dupire F, Stébé MJ, Blin JL (2013) Colloids Surf B 112:139–145CrossRefGoogle Scholar
  10. 10.
    Shieh FK, Hsiao CT, Wu JW, Sue YC, Bao YL, Liu YH, Wan L, Hsu MH, Deka JR, Kao HM (2013) J Hazard Mater 260:1083–1091CrossRefGoogle Scholar
  11. 11.
    Harmer MA, Sun Q (2001) Appl Catal A 221:45–62CrossRefGoogle Scholar
  12. 12.
    Timofeeva MN, Panchenko VN, Hasan Z, Khan NA, Mel’gunov MS, Abel AA, Matrosova M, Volchod KP, Jhung SH (2014) Appl Catal A 469:427–433CrossRefGoogle Scholar
  13. 13.
    Khan NA, Mishra DK, Ahmed I, Yoon JW, Hwang JS, Jhung SH (2013) Appl Catal A 452:34–38CrossRefGoogle Scholar
  14. 14.
    Timofeeva MN (2003) Appl Catal A 256:19–35CrossRefGoogle Scholar
  15. 15.
    Goestena MG, Juan-Alcañiz J, Ramos-Fernandez EV, Gupta KBSS, Stavitski E, Bekkum HV, Gascon J, Kapteijn F (2011) J Catal 281:177–187CrossRefGoogle Scholar
  16. 16.
    Akiyama G, Matsuda R, Sato H, Takata M, Kitagawa S (2011) Adv Mater 23:3294–3297CrossRefGoogle Scholar
  17. 17.
    Hasan Z, Jhung SH (2014) Eur J Inorg Chem 21:3420–3426CrossRefGoogle Scholar
  18. 18.
    Kureshy RI, Ahmad I, Pathak K, Khan NH, Abdi SHR, Jasra RV (2009) Catal Commun 10:572–575CrossRefGoogle Scholar
  19. 19.
    Zhang G, Zhang X, Lv J, Liu H, Qiu J, Yeung KL (2012) Catal Today 193:221–225CrossRefGoogle Scholar
  20. 20.
    Meziani MJ, Zajac J, Jones DJ, Patyka S, Roziere J, Auroux A (2000) Langmuir 16:2262–2268CrossRefGoogle Scholar
  21. 21.
    Brunel D, Blanc AC, Galarneau A, Fajula F (2002) Catal Today 73:139–152CrossRefGoogle Scholar
  22. 22.
    Dias AS, Pillinger M, Valente AA (2005) J Catal 229:414–423CrossRefGoogle Scholar
  23. 23.
    Malero JA, Stucky GD, Grieken R, Morales G (2002) J Mater Chem 12:1664–1670CrossRefGoogle Scholar
  24. 24.
    Bandyopadhyay M, Shiju NR, Brown DR (2010) Catal Commun 11:660–664CrossRefGoogle Scholar
  25. 25.
    Diaz I, Mohino F, Perez-Pariente J, Sastre E, Wright P, Zhou W (2001) Stud Surf Sci Catal 135:1248–1253Google Scholar
  26. 26.
    Margolese D, Melero JA, Christiansen SC, Chmelka BF, Stucky GD (2000) Chem Mater 12:2448–2459CrossRefGoogle Scholar
  27. 27.
    Bossaert WD, De Vos DE, Van Rhijn WM, Bullen J, Grobet PJ, Jacobs PA (1999) J Catal 182:156–164CrossRefGoogle Scholar
  28. 28.
    Bender M (1999) Bioresour Technol 70:81–87CrossRefGoogle Scholar
  29. 29.
    Diasakou M, Louloudi A, Papayannakos N (1998) Fuel 77:1297–1302CrossRefGoogle Scholar
  30. 30.
    Ogoshi T, Miyawaki Y (1985) J Am Oil Chem Soc 62:331–335CrossRefGoogle Scholar
  31. 31.
    Suppes GJ, Bockwinkel K, Lucas S, Botts JB, Mason MH, Heppert JA (2001) J Am Oil Chem Soc 78:139–145CrossRefGoogle Scholar
  32. 32.
    Kildiran G, Yucel SO, Turkay S (1996) J Am Oil Chem Soc 73:225–232CrossRefGoogle Scholar
  33. 33.
    Nam LTH, Vinh TQ, Loan NTT, Van Tho DS, Yang X, Su B (2011) Fuel 90:1069–1075CrossRefGoogle Scholar
  34. 34.
    Hara M (2009) Chem Sus Chem 2:109–135CrossRefGoogle Scholar
  35. 35.
    Sharma YC, Singh B (2010) Biofuels, Bioprod Biorefin 5:69–92CrossRefGoogle Scholar
  36. 36.
    Serio MD, Tesser R, Pengmei L, Santacesaria E (2008) Energy Fuels 22:207–217CrossRefGoogle Scholar
  37. 37.
    Diaz I, Mohino F, Perez-Pariente J, Sastre E (2003) Appl Catal A 242:161–169CrossRefGoogle Scholar
  38. 38.
    Alvaro M, Corma A, Das D, Fornes V, Garcia H (2005) J Catal 231:48–55CrossRefGoogle Scholar
  39. 39.
    Mbaraka IK, Radu DR (2003) Y Lin VS, Shanks BH. J Catal 219:329–336CrossRefGoogle Scholar
  40. 40.
    Sayari A, Hamoudi S (2001) Chem Mater 13:3151CrossRefGoogle Scholar
  41. 41.
    Lee AF, Bennett JA, Manayil JC, Wilson K (2014) Chem Soc Rev 43:7887–7916CrossRefGoogle Scholar
  42. 42.
    Shagufta Ahmad I, Dhar R (2017) Catal. Surv. Asia 21:53–69CrossRefGoogle Scholar
  43. 43.
    Bandyopadhyay M, Tsunoji N, Sano T (2017) Catal Lett 147:1040–1050CrossRefGoogle Scholar
  44. 44.
    Gies H, Grabowski S, Bandyopadhyay M, Grunert W, Tkachenko OP, Klementiev KV, Birkner A (2003) Micropor Mesopor Mater 60:31–42CrossRefGoogle Scholar
  45. 45.
    Lesaint C, Lebeau B, Marichal C, Patarin J (2005) Micropor Mesopor Mater 83:76–84CrossRefGoogle Scholar
  46. 46.
    Wang X, Tseng YH, Chan JCC (2007) J Phy Chem C 111:2156–2164CrossRefGoogle Scholar
  47. 47.
    Siril PF, Davison AD, Randhawa JK, Brown DR (2007) J Mol Catal A 267:72–78CrossRefGoogle Scholar
  48. 48.
    Yoshitake H, Yokoi T, Tatsumi T (2002) Chem Mater 14:4603–4610CrossRefGoogle Scholar
  49. 49.
    Li Y, Zhou G, Li C, Qin D, Qiao W, Chu B (2009) Colloids Surf A 341:79–85CrossRefGoogle Scholar
  50. 50.
    Fredman B, Pryde EH, Mounts TL (1984) J Am Oil Chem Soc 61:1638–1643CrossRefGoogle Scholar
  51. 51.
    Silveira JQ, Vargas MD, Ronconi CM (2011) J Mater Chem 21:6034–6039CrossRefGoogle Scholar
  52. 52.
    Molnar A (2011) Chem Rev 111:2251–2320CrossRefGoogle Scholar
  53. 53.
    Molnar A, Papp A (2017) Coord Chem Rev 349:1–65CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Mahuya Bandyopadhyay
    • 1
    • 2
  • Nao Tsunoji
    • 2
  • Rajib Bandyopadhyay
    • 3
  • Tsuneji Sano
    • 2
  1. 1.Institute of Infrastructure, Technology, Research and Management, IITRAMAhmedabadIndia
  2. 2.Department of Applied Chemistry, Graduate School of EngineeringHiroshima UniversityHigashi-HirosimaJapan
  3. 3.School of TechnologyPandit Deendayal Petroleum UniversityGandhinagarIndia

Personalised recommendations