Reaction Kinetics, Mechanisms and Catalysis

, Volume 125, Issue 2, pp 689–705 | Cite as

Hydroformylation of post-metathesis product using commercial rhodium-based catalysts

  • Nicholas C. C. BreckwoldtEmail author
  • Percy van der Gryp


The hydroformylation of the post-metathesis product 7-tetradecene using different commercially available homogeneous rhodium-based catalysts has been investigated. The influences of different reaction conditions such as temperature (60–90 °C), pressure (10–30 bar), ligand-to-metal ratio (0–30) and unwanted impurities in the reaction environment were found to have significant effect on resulting product distributions and catalyst performance parameters such as the turnover number and selectivity. The two main reactions observed were hydroformylation of 7-tetradecene to the target aldehyde product 2-hexylnonanal over the entire temperature range and isomerization above 70 °C. Selectivities as high as 99% toward the target product 2-hexylnonanal were observed with turnover numbers up to 980 (mol product mol Rh−1). A comparative study with different post-metathesis products also shows preferred selectivity (67–85%) toward corresponding branched aldehydes which is advantageous in the industrial context in which mixed post-metathesis feedstocks might be expected.


Hydroformylation Internal alkene Rhodium catalyst Post-metathesis 



The support of the DST-NRF Centre of Excellence in Catalysis (CoE) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the author and are not necessarily to be attributed to the CoE. The authors also wish to thank the Department of Process Engineering, University of Stellenbosch for financial support.


  1. 1.
    Cornils B, Hermann WA (2002) Applied homogeneous catalysis with organometallic compounds: a comprehensive handbook in three volumes. Wiley, WeinheimCrossRefGoogle Scholar
  2. 2.
    Börner A, Franke R (2016) Hydroformylation: fundamentals, processes, and applications in organic synthesis. Wiley, WeiheimCrossRefGoogle Scholar
  3. 3.
    Van Leeuwen PW, Claver C (eds) (2002) Rhodium catalyzed hydroformylation. Springer, New YorkGoogle Scholar
  4. 4.
    Vilches-Herrera M, Domke L, Börner A (2014) Isomerization-hydroformylation tandem reactions. ACS Catal 4:1706–1724CrossRefGoogle Scholar
  5. 5.
    Van der Veen LA, Kamer PCJ, Van Leeuwen PWNM (1999) Hydroformylation of internal olefins to linear aldehydes with novel rhodium catalysts. Angew Chem Int Ed 38:336–338CrossRefGoogle Scholar
  6. 6.
    Beller M, Zimmermann B, Geissler H (1999) Dual catalytic systems for consecutive isomerization–hydroformylation reactions. Chem Eur J 5(4):1301–1305CrossRefGoogle Scholar
  7. 7.
    Selent D, Wiese KD, Rottger D, Borner A (2000) Novel oxyfunctionalized phosphonite ligands for the hydroformylation of isomeric n-olefins. Angew Chem Int Ed 39:1639–1641CrossRefGoogle Scholar
  8. 8.
    Selent D, Hess D, Wiese KD, Rottger D, Kunze C, Borner A (2001) New phosphorus ligands for the rhodium-catalyzed isomerization/hydroformylation of internal octenes. Angew Chem Int Ed 40:1696–1698CrossRefGoogle Scholar
  9. 9.
    Klein H, Jackstell R, Wiese KD, Borgmann C, Beller M (2001) Highly selective catalyst systems for the hydroformylation of internal olefins to linear aldehydes. Angew Chem Int Ed 40:3408–3411CrossRefGoogle Scholar
  10. 10.
    Jackstell R, Klein H, Beller M, Wiese KD, Roettger D (2001) Synthesis of pyrrolyl-, indolyl-, and carbazolylphosphanes and their catalytic application as ligands in the hydroformylation of 2-pentene. Eur J Org Chem 20:3871–3877CrossRefGoogle Scholar
  11. 11.
    Van der Slot SC, Duran J, Luten J, Kamer PCJ, Van Leeuwen PWNM (2002) Rhodium-catalyzed hydroformylation and deuterioformylation with pyrrolyl-based phosphorus amidite ligands: influence of electronic ligand properties. Organometallics 21:3873–3883CrossRefGoogle Scholar
  12. 12.
    Bronger RP, Kamer PCJ, Van Leeuwen PW (2003) Influence of the bite angle on the hydroformylation of internal olefins to linear aldehydes. Organometallics 22(25):5358–5369CrossRefGoogle Scholar
  13. 13.
    Behr A, Obst D, Schulte C, Schosser T (2003) Highly selective tandem isomerization–hydroformylation reaction of trans-4-octene to n-nonanal with rhodium-BIPHEPHOS catalysis. J Mol Catal A 206:179–184CrossRefGoogle Scholar
  14. 14.
    Vogl C, Paetzold E, Fischer C, Kragl U (2005) Highly selective hydroformylation of internal and terminal olefins to terminal aldehydes using a rhodium-BIPHEPHOS-catalyst system. J Mol Catal A 232:41–44CrossRefGoogle Scholar
  15. 15.
    Yan Y, Zhang X, Zhang X (2006) A tetraphosphorus ligand for highly regioselective isomerization-hydroformylation of internal olefins. J Am Chem Soc 128:16058–16061CrossRefGoogle Scholar
  16. 16.
    Yu S, Chie YM, Guan ZH, Zhang X (2008) Highly regioselective isomerization-hydroformylation of internal olefins to linear aldehyde using Rh complexes with tetraphosphorus ligands. Org Lett 10:3469–3472CrossRefGoogle Scholar
  17. 17.
    Selent D, Kubis C, Spannenberg A, Baumann W, Borner A, Franke R, Kreidler B (2011) A new diphosphite promoting highly regioselective rhodium-catalyzed hydroformylation. Organometallics 30:4509–4514CrossRefGoogle Scholar
  18. 18.
    Chen C, Qiao Y, Geng H, Zhang X (2013) A novel triphosphoramidite ligand for highly regioselective linear hydroformylation of terminal and internal olefins. Org Lett 15:1048–1051CrossRefGoogle Scholar
  19. 19.
    Yuki Y, Takahashi K, Tanaka Y, Nozaki K (2013) Tandem isomerization/hydroformylation/hydrogenation of internal alkenes to n-alcohols using Rh/Ru dual- or ternary-catalyst systems. J Am Chem Soc 135:17393–17400CrossRefGoogle Scholar
  20. 20.
    Breit B, Winde R, Mackewitz T, Paciello R, Harns K (2001) Phosphabenzenes as monodentate π-acceptor ligands for rhodium-catalyzed hydroformylation. Chem A Eur J 7:3106–3121CrossRefGoogle Scholar
  21. 21.
    Haumann M, Yildiz H, Koch H, Schomacker R (2002) Hydroformylation of 7-tetradecene using Rh-TPPTS in a microemulsion. Appl Catal A 236:173–178CrossRefGoogle Scholar
  22. 22.
    Fuchs E, Keller M, Breit B (2006) Phosphabarrelenes as ligands in rhodium-catalyzed hydroformylation of internal alkenes essentially free of alkene isomerization. Chem Eur J 12:6930–6939CrossRefGoogle Scholar
  23. 23.
    Kuil M, Soltner T, Van Leeuwen PW, Reek JN (2006) High-precision catalysts: regioselective hydroformylation of internal alkenes by encapsulated rhodium complexes. J Am Chem Soc 128:11344–11345CrossRefGoogle Scholar
  24. 24.
    Taddei M, Mann A (2013) Hydroformylation for organic synthesis. Springer, LondonCrossRefGoogle Scholar
  25. 25.
    Reinius HK, Suomalainen P, Riihimaki H, Karvinen E, Pursiainen J, Krause AOI (2001) o-Alkyl-substituted triphenyl phosphines: activity and regioselectivity in rhodium-catalysed propene hydroformylation. J Catal 199:302–308CrossRefGoogle Scholar
  26. 26.
    Riihimaki H, Suomalainen P, Reinius HK, Suutari J, Jaaskelainen S, Krause AOI, Pakkanen TA, Pursianen JT (2003) o-Alkyl-substituted aromatic phosphanes for hydroformylation studies: synthesis, spectroscopic characterization and ab initio investigations. J Mol Catal A 200:69–79CrossRefGoogle Scholar
  27. 27.
    Riihimaki H, Kangas T, Suomalainen P, Reinius HK, Jaaskelainen S, Haukka M, Krause AOI, Pakkanen TA, Pursiainen JT (2003) Synthesis of new o-alkyl substituted arylalkylphosphanes: study of their molecular structure and influence on rhodium-catalyzed propene and 1-hexene hydroformylation. J Mol Catal A 200:81–94CrossRefGoogle Scholar
  28. 28.
    Gadzikwa T, Bellini R, Dekker HL, Reek JN (2012) Self-assembly of a confined rhodium catalyst for asymmetric hydroformylation of unfunctionalized internal alkenes. J Am Chem Soc 134(6):2860–2863CrossRefGoogle Scholar
  29. 29.
    Du Toit JI, Van der Gryp P, Loock MM, Tole TT, Marx S, Jordaan JH, Vosloo HC (2016) Industrial viability of homogeneous olefin metathesis: Beneficiation of linear alpha olefins with the diphenyl-substituted pyridinyl alcoholato ruthenium carbene precatalyst. Catal Today 275:191–200CrossRefGoogle Scholar
  30. 30.
    Peddie W, van Rensburg JN, Van Der Gryp P (2017) Technological evaluation of organic solvent nanofiltration for the recovery of homogeneous hydroformylation catalysts. Chem Eng Res Des 121:219–232CrossRefGoogle Scholar
  31. 31.
    Dry M (2002) The Fischer-Tropsch process: 1950–2000. Catal Today 71(3):227–241CrossRefGoogle Scholar
  32. 32.
    De Klerk A, Furimsky E (2010) Catalysis in the refining of Fischer-Tropsch syncrude. R Soc Chem, CambridgeGoogle Scholar
  33. 33.
    O’Lenick AJ (2001) Guerbet chemistry. J Surfactants Deterg 4:311–315CrossRefGoogle Scholar
  34. 34.
    Zoller U (ed) (2009) Handbook of detergents part F: production. CRC Press, Boca RatonGoogle Scholar
  35. 35.
    Jordaan M, Van Helden P, Van Sittert C, Vosloo H (2006) Experimental and DFT investigation of the 1-octene metathesis reaction mechanism with the Grubbs 1 precatalyst. J Mol Catal A 254(1–2):145–154CrossRefGoogle Scholar
  36. 36.
    Jordaan M, Vosloo HCM (2007) Ruthenium catalyst with a chelating pyridinyl-alcoholato ligand for application in linear alkene metathesis. Adv Synth Catal 349:184–192CrossRefGoogle Scholar
  37. 37.
    Van der Gryp P, Marx S, Vosloo HCM (2012) Experimental, DFT and kinetic study of 1-octene metathesis with Hoveyda-Grubbs second generation precatalyst. J Mol Catal A 355:85–95CrossRefGoogle Scholar
  38. 38.
    Arhancet JP, Davis ME, Hanson BE (1991) Supported aqueous-phase, rhodium hydroformylation catalysts II: hydroformylation of linear, terminal and internal olefins. J Catal 129:100–105CrossRefGoogle Scholar
  39. 39.
    Franke R, Selent D, Borner A (2012) Applied hydroformylation. Chem Rev 112:5675–5732CrossRefGoogle Scholar
  40. 40.
    Van der Gryp P, Barnard A, Cronje JP, De Vlieger D, Marx S, Vosloo HCM (2010) Separation of different metathesis Grubbs-type catalysts using organic solvent nanofiltration. J Membr Sci 353:70–77CrossRefGoogle Scholar
  41. 41.
    Hentschel B, Kiedorf G, Gerlach M, Hamel C, Seidel-Morgenstern A, Freund H, Sundmacher K (2015) Model-based identification and experimental validation of the optimal reaction route for the hydroformylation of 1-dodecene. Ind Eng Chem Res 54(6):1755–1765CrossRefGoogle Scholar
  42. 42.
    Kiedorf G, Hoang DM, Müller A, Jörke A, Markert J, Arellano-Garcia H, Seidel-Morgenstern A, Hamel C (2014) Kinetics of 1-dodecene hydroformylation in a thermomorphic solvent system using a rhodium-biphephos catalyst. Chem Eng Sci 115:31–48CrossRefGoogle Scholar
  43. 43.
    Bligaard T, Bullock RM, Campbell CT, Chen JG, Gates BC, Gorte RJ, Jones CW, Jones WD, Kitchin JR, Scott SL (2016) Toward benchmarking in catalysis science: best practices, challenges, and opportunities. ACS Catal 6(4):2590–2602CrossRefGoogle Scholar
  44. 44.
    Van Rooy A, de Bruijn JNH, Roobek KF, Kamer PCJ, Van Leeuwen PWNM (1996) Rhodium-catalysed hydroformylation of branched 1-alkenes; bulky phosphite vs. triphenylphosphine as modifying ligand. J Organomet Chem 507:69–73CrossRefGoogle Scholar
  45. 45.
    Tricas H, Diebolt O, Van Leeuwen PWNW (2013) Bulky monophosphate ligands for ethene hydroformylation. J Catal 298:198–205CrossRefGoogle Scholar
  46. 46.
    Jongsma T, Challa G (1991) A mechanistic study of rhodium tri(o-t-butylphenyl)phosphite complexes as hydroformylation catalyst. J Organomet Chem 421:121–128CrossRefGoogle Scholar
  47. 47.
    Dabbawala AA, Jasra RV, Bajaj HC (2011) Selective hydroformylation of 1-hexene to branched aldehydes using rhodium complex of modified bulky phosphine and phosphite ligands. Catal Commun 12:403–407CrossRefGoogle Scholar
  48. 48.
    Hanson BE, Davis ME (1987) Hydroformylation of 1-hexene utilizing homogeneous rhodium catalysts: regioselectivity as a function of conversion. J Chem Educ 64(11):928–930CrossRefGoogle Scholar
  49. 49.
    Van Rooy A, Orij EN, Kamer PCJ, Van Leeuwen PWNN (1995) Hydroformylation with a rhodium/bulky phosphite modified catalyst. A comparison of the catalyst behavior for Oct-1-ene, Cyclohexene, and Styrene. Organometallics 14:34–43CrossRefGoogle Scholar
  50. 50.
    Pino P (1980) Hydroformylation of olefinic hydrocarbons with rhodium and cobalt catalysts: analogies and dissimilarities. J Organomet Chem 200:223–242CrossRefGoogle Scholar
  51. 51.
    Fogler HS (2014) Elements of chemical reaction engineering. Pearson Education, IndianaGoogle Scholar
  52. 52.
    Maynard H, Grubbs RH (1999) Purification technique for the removal of ruthenium from olefin metathesis reaction products. Tetrahedron Lett 40:4137–4140CrossRefGoogle Scholar
  53. 53.
    Paquette LA, Schloss JD, Efremove I, Fabris F, Gallou F, Mendez-Andino J, Yang J (2000) A convenient method for removing all highly-colored byproducts generated during olefin metathesis reactions. Org Lett 2:1259–1261CrossRefGoogle Scholar
  54. 54.
    Ahn YM, Yang K, Georg GI (2001) A convenient method for the efficient removal of ruthenium byproducts generated during olefin metathesis reactions. Org Lett 3:1411–1413CrossRefGoogle Scholar
  55. 55.
    Westhus M, Gonthier E, Brohm D, Breinbauer R (2004) An efficient and inexpensive scavenger resin for Grubbs’ catalyst. Tetrahedron Lett 45:3141–3142CrossRefGoogle Scholar
  56. 56.
    Galan BR, Pitak M, Gembicky M, Keister JB, Diver ST (2009) Ligand-promoted carbene insertion into the aryl substituent of an N-heterocyclic carbene ligand in ruthenium-based metathesis catalysts. J Am Chem Soc 131(19):6822–6832CrossRefGoogle Scholar
  57. 57.
    Poater A, Cavallo L (2012) Deactivation of Ru-benzylidene Grubbs catalysts active in olefin metathesis. Theor Chem Acc 131(3):1155–1160CrossRefGoogle Scholar
  58. 58.
    Lehman SE, Schwendeman JE, O’Donell PM, Wagener KB (2003) Olefin isomerization promoted by olefin metathesis catalysts. Inorganical Chimica Acta 345:190–198CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Nicholas C. C. Breckwoldt
    • 1
    Email author
  • Percy van der Gryp
    • 1
    • 2
  1. 1.Department of Process EngineeringUniversity of StellenboschMatielandSouth Africa
  2. 2.School of Chemical and Minerals Engineering, Research Focus Area for Chemical Resource BeneficiationNorth-West UniversityPotchefstroomSouth Africa

Personalised recommendations