Advertisement

Reaction Kinetics, Mechanisms and Catalysis

, Volume 124, Issue 2, pp 503–522 | Cite as

A study of ethanol conversion over zinc aluminate catalyst

  • Gabriella Garbarino
  • Paola Riani
  • María Villa García
  • Elisabetta Finocchio
  • Vicente Sánchez Escribano
  • Guido Busca
Article
  • 71 Downloads

Abstract

The conversion of ethanol over a commercial ZnAl2O4 has been investigated. The catalyst has been fully characterized by XRD, IR, UV–Vis-NIR, ICP-OES, EDX-FE-SEM, BET and porosimetry. The catalyst is active in converting ethanol. At low conversion, diethyl ether is the main product while at higher conversions acetaldehyde is the main product (max yield ~ 50%). Ethylene and ethyl acetate are coproduced. Acetone and propylene become relevant products at complete conversion. The mechanism of formation of the products is discussed based on infrared surface chemical data, thermodynamic and kinetic data. Two independent catalytic sites exist, one for dehydration, the other for dehydrogenation, similar to those of Zinc oxide, giving rise to two parallel reaction sequencies. Criteria for developing selective catalysts towards dehydrogenation products are briefly discussed.

Keywords

Zinc aluminate Ethanol conversion Acetaldehyde Ethylene Diethylether Acido-basicity 

Notes

Acknowledgements

The authors would like to acknowledge Antonio Bacigalupo and Michele Pastorino for performing the catalytic tests during their Bachelor’s thesis.

Supplementary material

11144_2018_1395_MOESM1_ESM.docx (1.6 mb)
Supplementary material 1 (DOCX 1638 kb)

References

  1. 1.
    Limayem A, Ricke SC (2012) Prog Energy Combust Sci 38:449–467CrossRefGoogle Scholar
  2. 2.
    Balat M (2011) Energy Convers Manag 52:858–875CrossRefGoogle Scholar
  3. 3.
    Mohsenzadeh A, Zamani A, Taherzadeh MJ (2017) Chem Bio Eng Rev 4:75–81Google Scholar
  4. 4.
    Phung TK, Proietti Hernández L, Lagazzo A, Busca G (2015) Appl Catal A 493:77–89CrossRefGoogle Scholar
  5. 5.
    Fujita S, Iwasa N, Tani H, Nomura W, Arai M, Takezawa N (2001) React Kinet Catal Lett 73:367–372CrossRefGoogle Scholar
  6. 6.
    Chung MJ, Han SH, Park KY, Ihm SK (1993) J Mol Catal 79:335–345CrossRefGoogle Scholar
  7. 7.
    Wang C, Garbarino G, Allard LF, Wilson F, Busca G, Flytzani-Stephanopoulos M (2016) ACS Catal 6:210–218CrossRefGoogle Scholar
  8. 8.
    Nakajima T, Tanabe K, Yamaguchi T, Matsuzaki T (1987) J Chem Soc Chem Commun 294–295Google Scholar
  9. 9.
    Inui K, Kurabayashi T, Sato S (2002) Appl Catal A 237:53–61CrossRefGoogle Scholar
  10. 10.
    Larina OV, Kyriienko PI, Soloviev SO (2015) Catal Lett 145:1162–1168CrossRefGoogle Scholar
  11. 11.
    Bhattacharyya SK, Ganguly ND (1962) J Appl Chem 12:105–110CrossRefGoogle Scholar
  12. 12.
    McKetta J (1993) Chemical processing handbook. Wiley, New York, pp 786–789Google Scholar
  13. 13.
    Phung TK, Lagazzo A, Rivero Crespo MÁ, Sanchez Escribano V, Busca G (2014) J Catal 311:102–113CrossRefGoogle Scholar
  14. 14.
    Phung TK, Herrera C, Larrubia MÁ, García-Diéguez M, Finocchio E, Alemany LJ, Busca G (2014) Appl Catal A 483:41–51CrossRefGoogle Scholar
  15. 15.
    Garbarino G, Travi I, Pani M, Carnasciali MM, Busca G (2015) Catal Commun 70:77–81CrossRefGoogle Scholar
  16. 16.
    Kieffer R, Hinderman JP, El Bacha R, Kiennemann A, Deluzarche A (1982) React Kinet Catal Lett 21:17–21CrossRefGoogle Scholar
  17. 17.
    DeWilde JF, Czopinski CJ, Bhan A (2014) ACS Catal 4:4425–4433CrossRefGoogle Scholar
  18. 18.
    Corma A, Iborra S (2006) Adv Catal 49:239–302Google Scholar
  19. 19.
    Busca G (2010) Chem Rev 110:2217–2249CrossRefGoogle Scholar
  20. 20.
    Lari GM, Desai K, Mondelli C, Pérez-Ramírez J (2016) Catal Sci Technol 6:2706–2714CrossRefGoogle Scholar
  21. 21.
    Phung TK, Proietti Hernández L, Lagazzo A, Busca G (2015) Appl Catal A 489:180–187CrossRefGoogle Scholar
  22. 22.
    Eckert M, Fleischmann G, Jira R, Bolt HM, Golka K (2012) Acetaldehyde, in Ullman’s encyclopedia of industrial chemistry. Wiley, WeinheimGoogle Scholar
  23. 23.
    Weissermel K, Arpe HJ (2008) Industrial organic chemistry, 3rd edn. Wiley, New York, p 167Google Scholar
  24. 24.
    Shan J, Janvelyan N, Li H, Liu J, Egle TM, Ye J, Biener MM, Biener J, Friend CM, Flytzani-Stephanopoulos M (2017) Appl Catal B 205:541–550CrossRefGoogle Scholar
  25. 25.
    Tanabe K, Shimazu K, Hattori H, Shimazu KI (1979) J Catal 57:35–40CrossRefGoogle Scholar
  26. 26.
    Rossi PF, Busca G, Lorenzelli V, Waquif M, Saur O, Lavalley JC (1991) Langmuir 7:2677–2681CrossRefGoogle Scholar
  27. 27.
    Bournay L, Casanave D, Delfort B, Hillion G, Chodorge JA (2005) Catal Today 106:190–192CrossRefGoogle Scholar
  28. 28.
    Dimian AC, Rothenberg G (2016) Catal Sci Technol 6:6097–6108CrossRefGoogle Scholar
  29. 29.
    Breuer W, Raths HC (1994) US patent 5326891, HenkelGoogle Scholar
  30. 30.
    Wolf G, Burkhart B, Lauth G, Trapp H, Oftring A (1998) US patent 5741947, BASFGoogle Scholar
  31. 31.
    Welch BM (1986) US patent 4620053, Phillips Petroleum CompanyGoogle Scholar
  32. 32.
    Li X, Zhu Z, Zhao Q, Wang L (2011) J Hazard Mat 186:2089–2096CrossRefGoogle Scholar
  33. 33.
    Staszak W, Zawadzki M, Okal J (2010) J Alloys Compd 492:500–507CrossRefGoogle Scholar
  34. 34.
    Busca G (2014) Heterogeneous catalytic materials. Elsevier, New YorkGoogle Scholar
  35. 35.
    Thommes M, Taneko K, Neimark AV, Oliver JP, Rodriguez-Reinoso F, Roquerol J, Sing KSW (2015) Pure Appl Chem 87:1051–1069CrossRefGoogle Scholar
  36. 36.
    White WB, Deangelis BA (1967) Spectrochim Acta A23:985–995CrossRefGoogle Scholar
  37. 37.
    Wang SF, Sun GZ, Fang LM, Lei Li, Xiang X, Zu XT (2015) Sci Rep 5:12849Google Scholar
  38. 38.
    Kushwaha AK (2013) Comput Mater Sci 69:505–509CrossRefGoogle Scholar
  39. 39.
    Karazanov SE, Ravindran P (2010) J Am Ceram Soc 93:3335–3341CrossRefGoogle Scholar
  40. 40.
    Anand GT, Kennedy LJ, Aruldoss U, Vijaya JJ (2015) J Mol Struct 1084:244–253CrossRefGoogle Scholar
  41. 41.
    Montanari T, Sisani M, Nocchetti M, Vivani R, Herrera Delgado MC, Ramis G, Busca G, Costantino U (2010) Catal Today 152:104–109CrossRefGoogle Scholar
  42. 42.
    Busca G (2014) Catal Today 226:2–13CrossRefGoogle Scholar
  43. 43.
    Busca G (2014) Adv Catal 57:319–404Google Scholar
  44. 44.
    Scarano D, Bertarione S, Spoto G, Zecchina A, Otero Arean C (2001) Thin Solid Films 400:50–55CrossRefGoogle Scholar
  45. 45.
    Liu Q, Wang L, Wang C, Qu W, Tian Z, Ma H, Wang D, Wang B, Xu Z (2013) Appl Catal B 136–137:210–217CrossRefGoogle Scholar
  46. 46.
    Busca G, Lorenzelli V (1982) Mater Chem 7:89–126CrossRefGoogle Scholar
  47. 47.
    Rahman MM, Davidson SD, Sun J, Wang Y (2016) Top Catal 59:37–45CrossRefGoogle Scholar
  48. 48.
    Ghiotti G, Chiorino A, Boccuzzi F (1993) Surf Sci 287(288):228–234CrossRefGoogle Scholar
  49. 49.
    Wilson HF, Barnard AS (2015) J Phys Chem C 119:26560–26565CrossRefGoogle Scholar
  50. 50.
    Phung TK, Busca G (2015) Cat Commun 68:110–116CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Laboratorio di Chimica delle superfici e catalisi, Dipartimento di Ingegneria Civile, Chimica e Ambientale (DICCA)Università degli Studi di GenovaGenoaItaly
  2. 2.Dipartimento di FarmaciaUniversità degli Studi di GenovaGenoaItaly
  3. 3.Departamento de Química InorgánicaUniversidad de SalamancaSalamancaSpain

Personalised recommendations