Advertisement

Reaction Kinetics, Mechanisms and Catalysis

, Volume 124, Issue 2, pp 563–574 | Cite as

Catalytic performance of KL zeolite-supported iron and cobalt catalysts for the Fischer–Tropsch synthesis

  • J. F. da Silva
  • L. F. F. P. G. Bragança
  • M. I. Pais da Silva
Article
  • 86 Downloads

Abstract

In this work, Fe and Co were introduced into a KL zeolite support by incipient wetness impregnation to obtain catalysts for the Fischer–Tropsch synthesis (FTS). The samples were analyzed by several techniques including atomic absorption spectroscopy (AAS), N2 adsorption, X-ray diffraction (XRD), H2-temperature programmed reduction (TPR) and transmission electron microscopy (TEM). The catalytic performance for the FTS was tested with a fixed bed reactor. The particle size distribution of the samples was estimated by TEM microphotographs and showed that the diameters of the iron and cobalt particles were ~ 6 nm and 8–20 nm, respectively. The catalyst with the higher percentage of iron promoted the highest CO conversion, and the distribution of the products was shifted to light fractions. The iron-based catalysts were more active than cobalt in the CO conversion, but the latter yielded a higher content of hydrocarbons with 5 and more carbons.

Keywords

Fischer–Tropsch synthesis KL zeolite Iron and cobalt catalysts 

Notes

Acknowledgements

The authors gratefully acknowledge NUCAT from COPPE/UFRJ to the technical support.

References

  1. 1.
    Schulz H (1993) Appl Catal 186:3–12CrossRefGoogle Scholar
  2. 2.
    Davis BH (2001) Fuel Process Technol 71:157–166CrossRefGoogle Scholar
  3. 3.
    Iglesia E (1997) Appl Catal A 161:59–78CrossRefGoogle Scholar
  4. 4.
    Dry ME (1990) Catal Today 6:183–206CrossRefGoogle Scholar
  5. 5.
    Soled SL, Iglesia E, Fiato RA, Baumgartner JE, Vroman H, Miseo S (2003) Top Catal 26:101–109CrossRefGoogle Scholar
  6. 6.
    Khodakov AY, Griboval-Constant A, Bechara R, Zholobenko VL (2002) J Catal 206:230–241CrossRefGoogle Scholar
  7. 7.
    Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Science 279:548–552CrossRefPubMedGoogle Scholar
  8. 8.
    Tanev PT, Pinnavaia TJ (1995) Science 267:865–867CrossRefPubMedGoogle Scholar
  9. 9.
    Saib AM, Claeys M, van Steen E (2002) Catal Today 71:395–402CrossRefGoogle Scholar
  10. 10.
    Reuel RC, Bartholomew CH (1984) J Catal 85:78–88CrossRefGoogle Scholar
  11. 11.
    Ernst B, Libs S, Chaumette P, Kiennemann A (1999) Appl. Catal A 186:145–168CrossRefGoogle Scholar
  12. 12.
    Keyvanloo K, Fisher McC J, Hecker WC, Lancee RJ, Jacobs G, Bartholomew CH (2015) J Catal 327:33–47CrossRefGoogle Scholar
  13. 13.
    Shimura K, Miyazawa T, Hanaoka T, Hirata S (2014) Catal Today 232:2–10CrossRefGoogle Scholar
  14. 14.
    Hao Q-Q, Lei C-Y, Song Y-H, Liu Z-T, Liu Z-W (2016) Catal Today 274:109–115CrossRefGoogle Scholar
  15. 15.
    Azzam K, Jacobs G, Ma W, Davis BH (2014) Catal Lett 144:389–394CrossRefGoogle Scholar
  16. 16.
    Wang W-J, Lin H-Yu, Chen Yu-W (2005) J Porous Mater 12:5–12CrossRefGoogle Scholar
  17. 17.
    Cagnoli MV, Gallegos NG, Alvarez AM, Bengoa JF, Yeramián AA, Schmal M, Marchetti SG (2002) Appl Catal A 230:169–176CrossRefGoogle Scholar
  18. 18.
    Bengoa JF, Alvarez AM, Cagnoli MV, Gallegos NG, Yeramián AA, Marchetti SG (2002) Mat Lett 53:6–11CrossRefGoogle Scholar
  19. 19.
    Gallegos NG, Alvarez AM, Cagnoli MV, Bengoa JF, Cano LA, Mercader RC, Marchetti SG (2005) Catal Today 107–108:355–361CrossRefGoogle Scholar
  20. 20.
    Jo-Y Park (2010) Lee Y-Jo, Khanna PK, Jun KI-W, Bae JW, Kim YH. J Mol Catal A. 323:84–90CrossRefGoogle Scholar
  21. 21.
    Rausch AK, Schubert L, Henkel R, van Steen E, Claeys M, Roessner F (2016) Catal Today 275:94–99CrossRefGoogle Scholar
  22. 22.
    Cheng K, Virginie M, Ordomsky VV, Cordier C, Chernavskii Petr A, Ivantsov MI, Paul S, Ye Wang, Khodakov AY (2015) J Catal 328:139–150CrossRefGoogle Scholar
  23. 23.
    Cano LA, Cagnoli MV, Fellenz NA, Bengoa JF, Gallegos NG, Alvarez AM, Marchetti SG (2010) Appl Catal A 379:105–110CrossRefGoogle Scholar
  24. 24.
    Cano LA, Garcia Blanco AA, Lerner G, Marchetti SG, Sapag K (2017) Catal Today 282:204–213CrossRefGoogle Scholar
  25. 25.
    Baranak M, Gurunlu B, Sarioglan A, Ataç O, Atakul H (2013) Catal Today 207:57–64CrossRefGoogle Scholar
  26. 26.
    Chalupka KA, Maniukiewicz W, Mierczynski P, Maniecki T, Rynkowski J, Dzwigaj S (2015) Catal Today 257:117–121CrossRefGoogle Scholar
  27. 27.
    Duan X, Wang Di, Qian G, Walmsley JC, Holmen A, Chen D, Zhou X (2016) J Eng Chem 25:311–317Google Scholar
  28. 28.
    Galvis HMT, Bitter JH, Davidian T, Ruitenbeek M, Dugulan AI, de Jong KP (2012) J Am Chem Soc 134:16207–16215CrossRefGoogle Scholar
  29. 29.
    Anderson RB (1984) The Fischer-Tropsch Synthesis. Academic Press, OrlandoGoogle Scholar
  30. 30.
    Storch HH, Golumbic N, Anderson RB (1951) The Fischer-Tropsch and related synthesis. Wiley, New YorkGoogle Scholar
  31. 31.
    Qiu C, Wu B, Meng S, Li Y (2015) Acta Chim Sinica 73:690–698CrossRefGoogle Scholar
  32. 32.
    Tihay F, Roger AC, Kiennemann A, Pourroy G (2000) Catal Today 58:263–269CrossRefGoogle Scholar
  33. 33.
    Bragança LFFPG, Ojeda M, Fierro JLG, Pais da Silva MI (2012) Appl Catal A 423:146–153CrossRefGoogle Scholar
  34. 34.
    Breck DW (1974) Zeolites molecular sieves structure chemistry and uses. Wiley, New YorkGoogle Scholar
  35. 35.
    Bukur DB, Sivaraj C (2002) Appl Catal A 231:201–214CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • J. F. da Silva
    • 2
  • L. F. F. P. G. Bragança
    • 1
  • M. I. Pais da Silva
    • 2
  1. 1.Departamento de Engenharia Química e PetróleoUniversidade Federal FluminenseNiteróiBrazil
  2. 2.Departamento de QuímicaPontifícia Universidade Católica do Rio de JaneiroRio De JaneiroBrazil

Personalised recommendations