Advertisement

Reaction Kinetics, Mechanisms and Catalysis

, Volume 124, Issue 2, pp 701–710 | Cite as

Competitive asymmetric transfer hydrogenation of 3,4-dihydroisoquinolines employing Noyori-Ikariya catalytic complexes

  • Radka Hrdličková
  • Jakub Zápal
  • Bea Václavíková Vilhanová
  • Martina Bugáňová
  • Klára Truhlářová
  • Marek Kuzma
  • Libor Červený
Article
  • 89 Downloads

Abstract

Competitive asymmetric transfer hydrogenation (ATH) of three differently methoxy-substituted 1-methyl-3,4-dihydroisoquinolines (1-Me-DHIQs) was carried out to examine the differences in their reactivity with six ruthenium complexes of the Noyori-Ikariya type having the general formula [Ru(II)Cl(η6-arene)(N-arylsulfonyl-DPEN)] (DPEN = 1,2-diphenylethylene-1,2-diamine). The reaction kinetics of two or three substrates at once was followed in situ by 1H NMR spectroscopy. A method originally developed for heterogeneous catalysis was used to evaluate the experimental data, providing selectivities of the catalysts to the particular substrates and affinity of these substrates to the active site. The higher reaction rate was usually connected with both higher selectivity and affinity. However, in several cases, the opposite behavior was observed, pointing to a higher selectivity towards the less reactive substrate, which can inhibit the reaction due to its higher affinity. No competitive behavior was manifested in terms of enantioselectivity. As the structure of the Noyori-Ikariya catalytic complexes is highly variable and previous structure–activity studies have often been inconclusive, the presented method may aid in the disentanglement of the complex relationships important for rational catalyst design.

Keywords

Asymmetric transfer hydrogenation Competition Dihydroisoquinoline Imine Ruthenium 

Notes

Acknowledgements

The work was financially supported by the Czech Science Foundation (GA15-08992S) and the National Program of Sustainability (NPU I LO1613 and LO1509). The research was conducted within the infrastructure built up from the support of the Operational Programme Prague—Competitiveness (CZ.2.16/3.1.00/24501 and CZ.2.16/3.1.00/24023).

Supplementary material

11144_2018_1387_MOESM1_ESM.pdf (492 kb)
Supplementary material 1 (PDF 491 kb)

References

  1. 1.
    Wang C, Wu X, Xiao J (2008) Chem Asian J 3:1750–1770CrossRefPubMedGoogle Scholar
  2. 2.
    Wang D, Astruc D (2015) Chem Rev 115:6621–6686CrossRefPubMedGoogle Scholar
  3. 3.
    Foubelo F, Yus M (2015) Chem Rec 15:907–924CrossRefPubMedGoogle Scholar
  4. 4.
    Wills M (2016) Top Curr Chem 374:14CrossRefGoogle Scholar
  5. 5.
    Takehara J, Hashiguchi S, Fujii A, Inoue S, Ikariya T, Noyori R (1996) Chem Commun 2:233–234CrossRefGoogle Scholar
  6. 6.
    Fujii A, Hashiguchi S, Uematsu N, Ikariya T, Noyori R (1996) J Am Chem Soc 118:2521–2522CrossRefGoogle Scholar
  7. 7.
    Ružič M, Pečavar A, Prudič D, Kralj D, Scriban C, Zanotti-Gerosa A (2012) Org Proc Res Dev 16:1293–1300CrossRefGoogle Scholar
  8. 8.
    Vilhanová B, Matoušek V, Václavík J, Syslová K, Přech J, Pecháček J, Šot P, Januščák J, Toman J, Zápal J, Kuzma M, Kačer P (2013) Tetrahedron Asymmetry 24:50–55CrossRefGoogle Scholar
  9. 9.
    Uematsu N, Fujii A, Hashiguchi S, Ikariya T, Noyori R (1996) J Am Chem Soc 118:4916–4917CrossRefGoogle Scholar
  10. 10.
    Noyori R, Hashiguchi S (1997) Acc Chem Res 30:97–102CrossRefGoogle Scholar
  11. 11.
    Václavík J, Šot P, Vilhanová B, Pecháček J, Kuzma M, Kačer P (2013) Molecules 18:6804–6828CrossRefPubMedGoogle Scholar
  12. 12.
    Wu Z, Perez M, Scalone M, Ayad T, Ratovelomanana-Vidal V (2013) Angew Chem Int Ed 52:4925–4928CrossRefGoogle Scholar
  13. 13.
    Václavík J, Kačer P, Kuzma M, Červený L (2011) Molecules 16:5460–5495CrossRefPubMedGoogle Scholar
  14. 14.
    Přech J, Václavík J, Šot P, Pecháček J, Vilhanová B, Januščák J, Syslová K, Pažout R, Maixner J, Zápal J, Kuzma M, Kačer P (2013) Catal Commun 36:67–70CrossRefGoogle Scholar
  15. 15.
    Šot P, Vilhanová B, Pecháček J, Václavík J, Zápal J, Kuzma M, Kačer P (2014) Tetrahedron Asymmetry 25:1346–1351CrossRefGoogle Scholar
  16. 16.
    Matuška O, Zápal J, Hrdličková R, Mikoška M, Pecháček J, Vilhanová B, Václavík J, Kuzma M, Kačer P (2016) Reac Kinet Mech Cat 118:215–222CrossRefGoogle Scholar
  17. 17.
    Vilhanová B, Václavík J, Šot P, Pecháček J, Zápal J, Pažout R, Maixner J, Kuzma M, Kačer P (2016) Chem Commun 52:362–365CrossRefGoogle Scholar
  18. 18.
    Václavík J, Pecháček J, Vilhanová B, Šot P, Januščák J, Matoušek V, Přech J, Bártová S, Kuzma M, Kačer P (2013) Catal Lett 143:555–562CrossRefGoogle Scholar
  19. 19.
    Klusoň P, Kačer P, Červený L (1996) Reac Kinet Catal Lett 59:263–268CrossRefGoogle Scholar
  20. 20.
    Matuška O, Hrdličková R, Zápal J, Pecháček J, Kuzma M, Kačer P (2017) Chem Listy 111:163–166Google Scholar
  21. 21.
    Přech J, Matoušek V, Václavík J, Pecháček J, Syslová K, Šot P, Januščák J, Vilhanová B, Kuzma M, Kačer P (2013) Am J Anal Chem 4:125–133CrossRefGoogle Scholar
  22. 22.
    Kačer P, Laate L, Červený L (1998) Collect Czech Chem Commun 63:1905–1926CrossRefGoogle Scholar
  23. 23.
    Rader CP, Smith HA (1962) J Am Chem Soc 84:1443–1449CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Department of Organic TechnologyUniversity of Chemistry and TechnologyPrague 6Czech Republic
  2. 2.Laboratory of Molecular Structure Characterization, Institute of MicrobiologyCzech Academy of Sciences of the VídeňskáPrague 4Czech Republic

Personalised recommendations