Reaction Kinetics, Mechanisms and Catalysis

, Volume 124, Issue 2, pp 683–699 | Cite as

Hydrogenolysis of glycerol to 1,3-propanediol over Li2B4O7-modified tungsten–zirconium composite oxides supported platinum catalyst

  • Min Zhu
  • Changlin ChenEmail author


A series of Pt–yLi2B4O7/WOx/ZrO2 (y = 0, 0.5, 1, 2 wt%) catalysts were prepared by varying the content of Li2B4O7 through the method of coimpregnation-calcination. The obtained catalysts were used for the selective hydrogenolysis of glycerol to 1,3-propanediol. Meanwhile, these catalysts were characterized by N2 adsorption and desorption (BET), CO chemisorption, X-ray diffraction (XRD), NH3-temperature programmed desorption (NH3-TPD), H2-temperature programmed reduction (H2-TPR), Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). The results showed that Pt–1Li2B4O7/WOx/ZrO2 achieved the highest activity with glycerol conversion of 90.7% at 150 °C and 4 MPa and exhibited excellent stability over 200 h. Pt/WOx/ZrO2 catalyst modified with Li2B4O7 was able to enhance catalytic activity and stability, since Li2B4O7 promoted the dispersion of Pt, increased the acid amount of the catalyst and strengthened the interaction between active components and support.


Glycerol hydrogenolysis 1,3-Propanediol Tungsten and zirconium composite oxides Li2B4O7 Stability 



Financial support by the Research and Development of Prospective Research Project of Jiangsu Province, China (BY2015005-08) is gratefully acknowledged.


  1. 1.
    Wang YL, Zhou JX, Guo XW (2015) RSC Adv 5:74611–74628CrossRefGoogle Scholar
  2. 2.
    Zhu SH, Zhu YL, Hao SL, Zheng HY, Mo T, Li YW (2012) Green Chem 14:2607–2616CrossRefGoogle Scholar
  3. 3.
    Ruppert AM, Weinberg K, Palkovits R (2012) Angew Chem 51:2564–2601CrossRefGoogle Scholar
  4. 4.
    Boffito DC, Neagoe C, Edake M, Pastor-Ramirez B, Patience GS (2014) Catal Today 237:13–17CrossRefGoogle Scholar
  5. 5.
    Nakagawa Y, Tomishige K (2011) Catal Sci Technol 1:179–190CrossRefGoogle Scholar
  6. 6.
    Liu LJ, Zhang YH, Wang AQ, Zhang T (2012) Chin J Catal 33:1257–1261CrossRefGoogle Scholar
  7. 7.
    Nakagawa Y, Shinmi Y, Koso S, Tomishige K (2010) J Catal 272:191–194CrossRefGoogle Scholar
  8. 8.
    Lee CS, Aroua MK, Daud WMAW, Cognet P, Pérès-Lucchese Y, Fabre PL, Reynes O, Latapie L (2015) Renew Sust Energy Rev 42:963–972CrossRefGoogle Scholar
  9. 9.
    Zhang YH, Zhao X-C, Wang Y, Zhou LK, Zhang JY, Wang J, Wang AQ, Zhang T (2013) J Mater Chem A 1:3724–3732CrossRefGoogle Scholar
  10. 10.
    Zheng SN, Zhu KN, Li W, Ji Y (2017) New J Chem 41:5752–5763CrossRefGoogle Scholar
  11. 11.
    Kurian JV (2005) J Polym Environ 13:159–167CrossRefGoogle Scholar
  12. 12.
    Mizugaki T, Yamakawa T, Arundhathi R, Mitsudome T, Jitsukawa K, Kaneda K (2012) Chem Lett 41:1720–1722CrossRefGoogle Scholar
  13. 13.
    Priya SS, Bhanuchander P, Kumar VP, Bhargava SK, Chary KVR (2016) Ind Eng Chem Res 55:4461–4472CrossRefGoogle Scholar
  14. 14.
    Ding TM, Tian HS, Zhao BQ (2016) React Kinet Mech Cat 118:497–508CrossRefGoogle Scholar
  15. 15.
    García-Fernández S, Gandarias I, Requies J, Soulimani F, Arias PL, Weckhuysen BM (2017) Appl Catal B Environ 204:260–272CrossRefGoogle Scholar
  16. 16.
    Kurosaka T, Maruyama H, Naribayashi I, Sasaki Y (2008) Catal Commun 9:1360–1363CrossRefGoogle Scholar
  17. 17.
    Fan YQ, Cheng SJ, Wang H, Ye DH, Xie SH, Pei Y, Hu HR, Hua WM, Li ZH, Qiao MH, Zong BN (2017) Green Chem 19:2174–2183CrossRefGoogle Scholar
  18. 18.
    Wang J, Lei N, Yang CJ, Su Y, Zhao XC, Wang AQ (2016) Chin J Catal 37:1513–1519CrossRefGoogle Scholar
  19. 19.
    Priya SS, Kumar VP, Kantam ML, Bhargava SK, Chary KVR (2014) Catal Lett 144:2129–2143CrossRefGoogle Scholar
  20. 20.
    Zhu SH, Zhu YL, Hao SL, Chen LG, Zhang B, Li YW (2012) Catal Lett 142:267–274CrossRefGoogle Scholar
  21. 21.
    Qin L-Z, Song M-J, Chen C-L (2010) Green Chem 12:1466–1472CrossRefGoogle Scholar
  22. 22.
    Edake M, Dalil M, Darabi Mahboub MJ, Dubois J-L, Patience GS (2017) RSC Adv 7:3853–3860CrossRefGoogle Scholar
  23. 23.
    García-Fernández S, Gandarias I, Tejido-Núñez Y, Requies J, Arias PL (2017) ChemCatChem 24:4508–4519CrossRefGoogle Scholar
  24. 24.
    Zhu SH, Gao XQ, Zhu YL, Li YW (2015) J Mol Catal A Chem 398:391–398CrossRefGoogle Scholar
  25. 25.
    Oh J, Dash S, Lee H (2011) Green Chem 13:2004–2007CrossRefGoogle Scholar
  26. 26.
    Pamphile-Adrián AJ, Florez-Rodriguez PP, Pires MHM, Perez G, Passos FB (2017) Catal Today 289:302–308CrossRefGoogle Scholar
  27. 27.
    Deng CH, Duan XZ, Zhou JH, Zhou XG, Yuan WK, Scott SL (2015) Catal Sci Technol 5:1540–1547CrossRefGoogle Scholar
  28. 28.
    Nakagawa Y, Ning X, Amada Y, Tomishige K (2012) Appl Catal A Gen 433–434:128–134CrossRefGoogle Scholar
  29. 29.
    Luo WT, Lyu Y, Gong LF, Du H, Wang T, Ding YJ (2016) RSC Adv 6:13600–13608CrossRefGoogle Scholar
  30. 30.
    Huang L, Zhu YL, Zheng HY, Ding GQ, Li YW (2009) Catal Lett 131:312–320CrossRefGoogle Scholar
  31. 31.
    Feng YH, Yin HB, Wang AL, Shen LQ, Yu LB, Jiang TS (2011) Chem Eng J 168:403–412CrossRefGoogle Scholar
  32. 32.
    Geng GL, Wei RP, Liang T, Zhou MH, Xiao GM (2015) React Kinet Mech Cat 117:239–251CrossRefGoogle Scholar
  33. 33.
    Niu L, Wei RP, Li C, Gao LJ, Zhou MH, Jiang F, Xiao GM (2015) React Kinet Mech Cat 115:377–388CrossRefGoogle Scholar
  34. 34.
    Zhou JX, Guo LY, Guo XW, Mao JB, Zhang SG (2010) Green Chem 12:1835–1843CrossRefGoogle Scholar
  35. 35.
    Zhu SH, Qiu YA, Zhu YL, Hao SL, Zheng HY, Li YW (2013) Catal Today 212:120–126CrossRefGoogle Scholar
  36. 36.
    García-Fernández S, Gandarias I, Requies J, Güemez MB, Bennici S, Auroux A, Arias PL (2015) J Catal 323:65–75CrossRefGoogle Scholar
  37. 37.
    Fan YQ, Cheng SJ, Wang H, Tian J, Xie SH, Pei Y, Qiao MH, Zong BN (2017) Appl Catal B Environ 217:331–341CrossRefGoogle Scholar
  38. 38.
    Luo WT, Lyu Y, Gong LF, Du H, Jiang M, Ding YJ (2016) React Kinet Mech Cat 118:481–496CrossRefGoogle Scholar
  39. 39.
    Arundhathi R, Mizugaki T, Mitsudome T, Jitsukawa K, Kaneda K (2013) ChemSusChem 6:1345–1347CrossRefPubMedGoogle Scholar
  40. 40.
    Zhu SH, Gao XQ, Zhu YL, Zhu YF, Xiang XM, Hu CX, Li YW (2013) Appl Catal B Environ 140–141:60–67CrossRefGoogle Scholar
  41. 41.
    Zhu SH, Gao XQ, Zhu YL, Cui JL, Zheng HY, Li YW (2014) Appl Catal B Environ 158–159:391–399CrossRefGoogle Scholar
  42. 42.
    Zhu SH, Gao XQ, Zhu YL, Zhu YF, Zheng HY, Li YW (2013) J Catal 303:70–79CrossRefGoogle Scholar
  43. 43.
    Checa M, Marinas A, Marinas JM, Urbano FJ (2015) Appl Catal A Gen 507:34–43CrossRefGoogle Scholar
  44. 44.
    Xiong HF, Schwartz TJ, Andersen NI, Dumesic JA, Datye AK (2015) Angew Chem 54:7939–7943CrossRefGoogle Scholar
  45. 45.
    Pham HN, Anderson AE, Johnson RL, Schwartz TJ, O’Neill BJ, Duan P, Schmidt-Rohr K, Dumesic JA, Datye AK (2015) ACS Catal 5:4546–4555CrossRefGoogle Scholar
  46. 46.
    Robertson DS, Young IM (1982) J Mater Sci 17:1729–1738CrossRefGoogle Scholar
  47. 47.
    Mohandoss R, Dhanuskodi S, Renganathan B, Sastikumar D (2013) Curr Appl Phys 13:957–963CrossRefGoogle Scholar
  48. 48.
    Ozdemir A, Altunal V, Kurt K, Depci T, Yu Y, Lawrence Y, Nur N, Guckan V, Yegingil Z (2017) Radiat Phys Chem 141:352–362CrossRefGoogle Scholar
  49. 49.
    Celik MG, Yilmaz A, Yazici AN (2017) Radiat Meas 102:16–26CrossRefGoogle Scholar
  50. 50.
    Barton DG, Soled SL, Iglesia E (1998) Top Catal 6:87–99CrossRefGoogle Scholar
  51. 51.
    Hadjiivanov K, Lukinskas P, Knözinger H (2002) Catal Lett 82:73–77CrossRefGoogle Scholar
  52. 52.
    Xi YJ, Zhang QF, Cheng HS (2013) J Phys Chem C 118:494–501CrossRefGoogle Scholar
  53. 53.
    Ebitani K, Hattori H (1991) B Chem Soc Jpn 64:2422–2427CrossRefGoogle Scholar
  54. 54.
    Zhigadlo ND, Zhang M, Salje EKH (2001) J Phys Condens Mat 13:6551–6561CrossRefGoogle Scholar
  55. 55.
    Priya SS, Bhanuchander P, Kumar VP, Dumbre DK, Periasamy SR, Bhargava SK, Lakshmi Kantam M, Chary KVR (2016) ACS Sustain Chem Eng 4:1212–1222CrossRefGoogle Scholar
  56. 56.
    Gong LF, Lu Y, Ding YJ, Lin RH, Li JW, Dong WD, Wang T, Chen WM (2010) Appl Catal A Gen 390:119–126CrossRefGoogle Scholar
  57. 57.
    Nimlos MR, Blanksby SJ, Qian XH, Himmel ME, Johnson DK (2006) J Phys Chem A 110:6145–6156CrossRefPubMedGoogle Scholar
  58. 58.
    Triwahyono S, Yamada T, Hattori H (2003) Appl Catal A Gen 242:101–109CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical EngineeringNanjing Tech UniversityNanjingChina

Personalised recommendations