Advertisement

Reaction Kinetics, Mechanisms and Catalysis

, Volume 124, Issue 2, pp 651–667 | Cite as

Preparation and performances of nanorod-like inverse CeO2–CuO catalysts derived from Ce-1,3,5-Benzene tricarboxylic acid for CO preferential oxidation

  • Chunlei Gu
  • Ran Qi
  • Ying Wei
  • Xiangjing Zhang
Article
  • 120 Downloads

Abstract

A facile one-pot strategy of using CeBTC MOF as template and precursor was explored to prepare rod-like inverse CeO2–CuO catalysts. The inverse CeO2–CuO catalysts were characterized by using techniques of N2 adsorption and desorption, XRD, TEM, TPR and XPS. The results indicated that the rod-like inverse CeO2–CuO catalysts maintained the shapes of CeBTC MOF templates. The Cu0.71Ce0.29 catalysts exhibited excellent catalytic performance which was attributed to the strong synergistic effect between CuO and CeO2 and subsequent formation of reduced copper species.

Keywords

Metal organic frameworks CO preferential oxidation Copper oxide Ceria Template 

Notes

Acknowledgements

The financial supports of this work by National Natural Science Foundation of China (21406053), Natural Science Foundation of Hebei province of China (B2014208141) are gratefully acknowledged.

Supplementary material

11144_2018_1374_MOESM1_ESM.doc (11.8 mb)
Supplementary material 1 (DOC 12119 kb)

References

  1. 1.
    Moretti E, Storaro L, Talon A, Riello P, Molina AI, Rodríguez-Castellón E (2015) 3-D flower like Ce–Zr–Cu mixed oxide systems in the CO preferential oxidation (CO-PROX): effect of catalyst composition. Appl Catal B 168:385–395.  https://doi.org/10.1016/j.apcatb.2014.12.032 CrossRefGoogle Scholar
  2. 2.
    Das HS, Tan CW, Yatim AHM (2017) Fuel cell hybrid electric vehicles: a review on power conditioning units and topologies. Renew Sustain Energy Rev 76(Supplement C):268–291.  https://doi.org/10.1016/j.rser.2017.03.056 CrossRefGoogle Scholar
  3. 3.
    Ni M, Leung DYC, Leung MKH (2007) A review on reforming bio-ethanol for hydrogen production. Int J Hydrog Energy 32(15):3238–3247CrossRefGoogle Scholar
  4. 4.
    Monte M, Gamarra D, López Cámara A, Rasmussen SB, Gyorffy N, Schay Z, Martínez-Arias A, Conesa JC (2014) Preferential oxidation of CO in excess H2 over CuO/CeO2 catalysts: performance as a function of the copper coverage and exposed face present in the CeO2 support. Catal Today 229:104–113.  https://doi.org/10.1016/j.cattod.2013.10.078 CrossRefGoogle Scholar
  5. 5.
    Lu S, Liu Y, Wang Y (2010) Meso-macro-porous monolithic Pt-Ni/Al2O3 catalysts used for miniaturizing preferential carbon monoxide oxidation reactor. Chem Commun 46(4):634–636CrossRefGoogle Scholar
  6. 6.
    Zhu H, Anjum DH, Wang Q, Abou-Hamad E, Emsley L, Dong H, Laveille P, Li L, Samal AK, Basset J-M (2014) Sn surface-enriched Pt–Sn bimetallic nanoparticles as a selective and stable catalyst for propane dehydrogenation. J Catal 320:52–62.  https://doi.org/10.1016/j.jcat.2014.09.013 CrossRefGoogle Scholar
  7. 7.
    Moretti E, Lenarda M, Riello P, Storaro L, Talon A, Frattini R, Reyes-Carmona A, Jiménez-López A, Rodríguez-Castellón E (2013) Influence of synthesis parameters on the performance of CeO2–CuO and CeO2–ZrO2–CuO systems in the catalytic oxidation of CO in excess of hydrogen. Appl Catal B 129:556–565.  https://doi.org/10.1016/j.apcatb.2012.10.009 CrossRefGoogle Scholar
  8. 8.
    Zeng S, Liu K, Zhang L, Qin B, Chen T, Yin Y, Su H (2014) Deactivation analyses of CeO2/CuO catalysts in the preferential oxidation of carbon monoxide. J Power Sources 261:46–54.  https://doi.org/10.1016/j.jpowsour.2014.03.043 CrossRefGoogle Scholar
  9. 9.
    Malwadkar S, Bera P, Hegde MS, Satyanarayana CVV (2012) Preferential oxidation of CO on Ni/CeO2 catalysts in the presence of excess H2 and CO2. Reac Kinet Mech Cat 107(2):405–419.  https://doi.org/10.1007/s11144-012-0477-6 CrossRefGoogle Scholar
  10. 10.
    Guo Q, Liu Y (2007) Preferential oxidation of CO in H2 over Co3O4-CeO2 catalysts. React Kinet Catal L 92(1):19–25.  https://doi.org/10.1007/s11144-007-4982-y CrossRefGoogle Scholar
  11. 11.
    Konsolakis M (2016) The role of Copper-Ceria interactions in catalysis science: recent theoretical and experimental advances. Appl Catal B 198:49–66.  https://doi.org/10.1016/j.apcatb.2016.05.037 CrossRefGoogle Scholar
  12. 12.
    Jia A-P, Deng Y, Hu G-S, Luo M-F, Lu J-Q (2015) Kinetic and activity study of CO oxidation over CuO–MnOx–CeO2 catalysts. Reac Kinet Mech Cat 117(2):503–520.  https://doi.org/10.1007/s11144-015-0947-8 CrossRefGoogle Scholar
  13. 13.
    Hornés A, Hungría AB, Bera P, Cámara AL, Fernández-García M, Martínez-Arias A, Barrio L, Estrella M, Zhou G, Fonseca JJ, Hanson JC, Rodriguez JA (2010) Inverse CeO2/CuO catalyst as an alternative to classical direct configurations for preferential oxidation of CO in hydrogen-rich stream. J Am Chem Soc 132(1):34–35.  https://doi.org/10.1021/ja9089846 CrossRefPubMedGoogle Scholar
  14. 14.
    Papavasiliou J, Avgouropoulos G, Ioannides T (2006) In situ combustion synthesis of structured Cu-Ce-O and Cu-Mn-O catalysts for the production and purification of hydrogen. Appl Catal B 66(3–4):168–174CrossRefGoogle Scholar
  15. 15.
    Zeng S, Liu Y, Wang Y (2007) CuO–CeO2/Al2O3/FeCrAl monolithic catalysts prepared by sol-pyrolysis method for preferential oxidation of carbon monoxide. Catal Lett 117(3):119–125CrossRefGoogle Scholar
  16. 16.
    Gu C, Lu S, Miao J, Liu Y, Wang Y (2010) Meso-macroporous monolithic CuO-CeO2/γ/α-Al2O3 catalysts for CO preferential oxidation in hydrogen-rich gas: effect of loading methods. Int J Hydrog Energ 35(12):6113–6122CrossRefGoogle Scholar
  17. 17.
    Zhang S-M, Huang W-P, Qiu X-H, Li B-Q, Zheng X-C, Wu S-H (2002) Comparative study on catalytic properties for low-temperature CO oxidation of Cu/CeO2 and CuO/CeO2 prepared via solvated metal atom impregnation and conventional impregnation. Catal Lett 80(1):41–46CrossRefGoogle Scholar
  18. 18.
    Zhu C, Ding T, Gao W, Ma K, Tian Y, Li X (2017) CuO/CeO2 catalysts synthesized from Ce-UiO-66 metal-organic framework for preferential CO oxidation. Int J Hydrog Energy 42(27):17457–17465.  https://doi.org/10.1016/j.ijhydene.2017.02.088 CrossRefGoogle Scholar
  19. 19.
    Qiu L-G, Xu T, Li Z-Q, Wang W, Wu Y, Jiang X, Tian X-Y, Zhang L-D (2008) Hierarchically micro- and mesoporous metal-organic frameworks with tunable porosity. Angewandte Chemie Int Edition 47(49):9487–9491.  https://doi.org/10.1002/anie.200803640 CrossRefGoogle Scholar
  20. 20.
    Mohammadnejad M, Hajiashrafi T, Rashnavadi R (2017) An erbium–organic framework as an adsorbent for the fast and selective adsorption of methylene blue from aqueous solutions. J Porous Mater.  https://doi.org/10.1007/s10934-017-0489-8 CrossRefGoogle Scholar
  21. 21.
    Motegi H, Yano K, Setoyama N, Matsuoka Y, Ohmura T, Usuki A (2017) A facile synthesis of UiO-66 systems and their hydrothermal stability. J Porous Mater 24(5):1327–1333.  https://doi.org/10.1007/s10934-017-0374-5 CrossRefGoogle Scholar
  22. 22.
    Luo Y, Calvillo L, Daiguebonne C, Daletou MK, Granozzi G, Alonso-Vante N (2016) A highly efficient and stable oxygen reduction reaction on Pt/CeOx/C electrocatalyst obtained via a sacrificial precursor based on a metal-organic framework. Appl Catal B 189(Supplement C):39–50.  https://doi.org/10.1016/j.apcatb.2016.02.028 CrossRefGoogle Scholar
  23. 23.
    Emam HE, Abdelhameed RM (2017) In-situ modification of natural fabrics by Cu-BTC MOF for effective release of insect repellent (N, N-diethyl-3-methylbenzamide). J Porous Mater 24(5):1175–1185.  https://doi.org/10.1007/s10934-016-0357-y CrossRefGoogle Scholar
  24. 24.
    Zhang F, Chen C, Xiao W-m XuL, Zhang N (2012) CuO/CeO2 catalysts with well-dispersed active sites prepared from Cu3(BTC)2 metal–organic framework precursor for preferential CO oxidation. Catal Commun 26:25–29.  https://doi.org/10.1016/j.catcom.2012.04.028 CrossRefGoogle Scholar
  25. 25.
    Ashouri F, Zare M, Bagherzadeh M (2015) Manganese and cobalt-terephthalate metal-organic frameworks as a precursor for synthesis of Mn2O3, Mn3O4 and Co3O4 nanoparticles: active catalysts for olefin heterogeneous oxidation. Inorg Chem Commun 61(Supplement C):73–76.  https://doi.org/10.1016/j.inoche.2015.08.019 CrossRefGoogle Scholar
  26. 26.
    Yang JH, Yang D, Li Y (2014) Graphene supported chromium carbide material synthesized from Cr-based MOF/graphene oxide composites. Mater Lett 130:111–114.  https://doi.org/10.1016/j.matlet.2014.05.082 CrossRefGoogle Scholar
  27. 27.
    Peng MM, Ganesh M, Vinodh R, Palanichamy M, Jang HT (2014) Solvent free oxidation of ethylbenzene over Ce-BTC MOF. Arab J Chem.  https://doi.org/10.1016/j.arabjc.2014.11.024 CrossRefGoogle Scholar
  28. 28.
    Davó-Quiñonero A, Navlani-García M, Lozano-Castelló D, Bueno-López A, Anderson JA (2016) Role of hydroxyl groups in the preferential oxidation of co over copper oxide-cerium oxide catalysts. ACS Catal 6(3):1723–1731.  https://doi.org/10.1021/acscatal.5b02741 CrossRefGoogle Scholar
  29. 29.
    Cecilia JA, Arango-Díaz A, Franco F, Jiménez-Jiménez J, Storaro L, Moretti E, Rodríguez-Castellón E (2015) CuO-CeO2 supported on montmorillonite-derived porous clay heterostructures (PCH) for preferential CO oxidation in H2-rich stream. Catal Today 253:126–136.  https://doi.org/10.1016/j.cattod.2015.01.040 CrossRefGoogle Scholar
  30. 30.
    Gurbani A, Ayastuy JL, González-Marcos MP, Gutiérrez-Ortiz MA (2010) CuO-CeO2 catalysts synthesized by various methods: comparative study of redox properties. Int J Hydrog Energy 35(20):11582–11890CrossRefGoogle Scholar
  31. 31.
    Zeng S, Zhang W, Śliwa M, Su H (2013) Comparative study of CeO2/CuO and CuO/CeO2 catalysts on catalytic performance for preferential CO oxidation. Int J Hydrog Energy 38(9):3597–3605.  https://doi.org/10.1016/j.ijhydene.2013.01.030 CrossRefGoogle Scholar
  32. 32.
    Chen C, Wang R, Shen P, Zhao D, Zhang N (2015) Inverse CeO2/CuO catalysts prepared from heterobimetallic metal–organic framework precursor for preferential CO oxidation in H2-rich stream. Int J Hydrog Energy 40(14):4830–4839.  https://doi.org/10.1016/j.ijhydene.2015.02.066 CrossRefGoogle Scholar
  33. 33.
    Martinez-Arias A, Hungría AB, Munuera G, Gamarra D (2006) Preferential oxidation of CO in rich H2 over CuO/CeO2: details of selectivity and deactivation under the reactant stream. Appl Catal B 65(3–4):207–216CrossRefGoogle Scholar
  34. 34.
    Yin Y, Liu K, Gao M, Zhang L, Su H, Zeng S (2015) Influence of the structure and morphology of CuO supports on the amount and properties of copper–cerium interfacial sites in inverse CeO2/CuO catalysts. J Mol Catal A 404:193–203.  https://doi.org/10.1016/j.molcata.2015.05.001 CrossRefGoogle Scholar
  35. 35.
    Elmhamdi A, Castañeda R, Kubacka A, Pascual L, Nahdi K, Martínez-Arias A (2016) Characterization and catalytic properties of CuO/CeO2/MgAl2O4 for preferential oxidation of CO in H2-rich streams. Appl Catal B 188:292–304.  https://doi.org/10.1016/j.apcatb.2016.02.011 CrossRefGoogle Scholar
  36. 36.
    Chen S, Li L, Hu W, Huang X, Li Q, Xu Y, Zuo Y, Li G (2015) Anchoring high-concentration oxygen vacancies at interfaces of CeO(2-x)/Cu toward enhanced activity for preferential CO oxidation. ACS Appl Mater Interfaces 7(41):22999–23007.  https://doi.org/10.1021/acsami.5b06302 CrossRefPubMedGoogle Scholar
  37. 37.
    Zeng S, Wang Y, Ding S, Sattler JJHB, Borodina E, Zhang L, Weckhuysen BM, Su H (2014) Active sites over CuO/CeO2 and inverse CeO2/CuO catalysts for preferential CO oxidation. J Power Sources 256:301–311.  https://doi.org/10.1016/j.jpowsour.2014.01.098 CrossRefGoogle Scholar
  38. 38.
    Park ED, Lee D, Lee HC (2009) Recent progress in selective CO removal in a H2-rich stream. Catal Today 139(4):280–290CrossRefGoogle Scholar
  39. 39.
    Chen S, Li L, Hu W, Huang X, Li Q, Xu Y, Zuo Y, Li G (2015) Anchoring high-concentration oxygen vacancies at interfaces of CeO2–x/Cu toward enhanced activity for preferential CO oxidation. ACS Appl Mater Interfaces 7(41):22999–23007.  https://doi.org/10.1021/acsami.5b06302 CrossRefPubMedGoogle Scholar
  40. 40.
    Wang Z, Li R, Chen Q (2015) Enhanced activity of CuCeO catalysts for CO oxidation: influence of Cu2O and the Dispersion of Cu2O, CuO, and CeO2. ChemPhysChem 16(11):2415–2423.  https://doi.org/10.1002/cphc.201500214 CrossRefPubMedGoogle Scholar
  41. 41.
    Arango Díaz A, Cecilia JA, dos Santos-Gómez L, Marrero-López D, Losilla ER, Jiménez-Jiménez J, Rodríguez-Castellón E (2015) Characterization and performance in preferential oxidation of CO of CuO–CeO2 catalysts synthesized using polymethyl metacrylate (PMMA) as template. Int J Hydrog Energy 40(34):11254–11260.  https://doi.org/10.1016/j.ijhydene.2015.04.094 CrossRefGoogle Scholar
  42. 42.
    Wang C, Cheng Q, Wang X, Ma K, Bai X, Tan S, Tian Y, Ding T, Zheng L, Zhang J, Li X (2017) Enhanced catalytic performance for CO preferential oxidation over CuO catalysts supported on highly defective CeO 2 nanocrystals. Appl Surf Sci 422:932–943.  https://doi.org/10.1016/j.apsusc.2017.06.017 CrossRefGoogle Scholar
  43. 43.
    Gao Z, Zhou M, Deng H, Yue Y (2012) Preferential oxidation of CO in excess H2 over CeO2/CuO catalyst: effect of calcination temperature. J Nat Gas Chem 21(5):513–518.  https://doi.org/10.1016/s1003-9953(11)60399-x CrossRefGoogle Scholar
  44. 44.
    Jampa S, Wangkawee K, Tantisriyanurak S, Changpradit J, Jamieson AM, Chaisuwan T, Luengnaruemitchai A, Wongkasemjit S (2017) High performance and stability of copper loading on mesoporous ceria catalyst for preferential oxidation of CO in presence of excess of hydrogen. Int J Hydrog Energy 42(8):5537–5548.  https://doi.org/10.1016/j.ijhydene.2016.08.078 CrossRefGoogle Scholar
  45. 45.
    Chesler P, Hornoiu C, Bratan V, Munteanu C, Postole G, Ionescu NI, Juzsakova T, Redey A, Gartner M (2016) CO sensing properties of SnO2–CeO2 mixed oxides. Reac Kinet Mech Cat 117(2):551–563.  https://doi.org/10.1007/s11144-015-0970-9 CrossRefGoogle Scholar
  46. 46.
    Luo Z, Mao S, Shen W, Zheng Y, Yu J (2017) Preparation and characterization of mesostructured cellular foam silica supported Cu–Ce mixed oxide catalysts for CO oxidation. RSC Adv 7:9732–9743.  https://doi.org/10.1039/C6RA25912J CrossRefGoogle Scholar
  47. 47.
    Guo X, Li J, Zhou R (2016) Catalytic performance of manganese doped CuO–CeO2 catalysts for selective oxidation of CO in hydrogen-rich gas. Fuel 163:56–64.  https://doi.org/10.1016/j.fuel.2015.09.043 CrossRefGoogle Scholar
  48. 48.
    Artiglia L, Orlando F, Roy K, Kopelent R, Safonova O, Nachtegaal M, Huthwelker T, van Bokhoven JA (2017) Introducing time resolution to detect Ce3+ catalytically active sites at the Pt/CeO2 interface through ambient pressure X-ray photoelectron spectroscopy. J Phys Chem Lett 8(1):102–108.  https://doi.org/10.1021/acs.jpclett.6b02314 CrossRefPubMedGoogle Scholar
  49. 49.
    Di Benedetto A, Landi G, Lisi L, Russo G (2013) Role of CO2 on CO preferential oxidation over CuO/CeO2 catalyst. Appl Catal B 142–143:169–177.  https://doi.org/10.1016/j.apcatb.2013.05.001 CrossRefGoogle Scholar
  50. 50.
    Wang WW, Du PP, Zou SH, He HY, Wang RX, Jin Z, Shi S, Huang YY, Si R, Song QS, Jia CJ, Yan CH (2015) Highly dispersed copper oxide clusters as active species in copper-ceria catalyst for preferential oxidation of carbon monoxide. ACS Catal 5:2088–2097CrossRefGoogle Scholar
  51. 51.
    Gamarra D, Munuera G, Hungria AB, Fernandez-Garcia M, Conesa JC, Midgley PA, Wang XQ, Hanson JC, Rodriguez JA, Martinez Arias A (2007) Structure—activity relationship in nanostructured copper—ceria-based preferential CO oxidation catalysts. J Phys Chem C 111(29):11026–11038CrossRefGoogle Scholar
  52. 52.
    Polster CS, Nair H, Baertsch CD (2009) Study of active sites and mechanism responsible for highly selective CO oxidation in H2 rich atmospheres on a mixed Cu and Ce oxide catalyst. J Catal 266(2):308–319CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.College of Chemical and Pharmaceutical EngineeringHebei University of Science and TechnologyShijiazhuangPeople’s Republic of China
  2. 2.Department of Catalysis Science and Technology, School of Chemical EngineeringTianjin UniversityTianjinPeople’s Republic of China

Personalised recommendations