Reaction Kinetics, Mechanisms and Catalysis

, Volume 124, Issue 2, pp 619–631 | Cite as

Ni-doped TiO2 nanotubes supported Ru catalysts for CO selective methanation in H2-rich reformate gases

  • Dan Ping
  • Hua Zhao
  • Xinfa DongEmail author


In this study, Ni-doped TiO2 nanotubes (Ni-TNTs) with increased thermal stability and improved tubular morphology were successfully prepared via a facile hydrothermal method. Detailed characterization results showed that the Ni element was successfully doped into TNTs structures, thereby resulting in increased thermal stability of TNTs, as reflected by the morphology changing from nanoparticles to nanorods and finally to nanotubes with the increase of Ni doping content. After impregnation of Ru, the resultant Ru/Ni-TNTs catalysts showed excellent catalytic performance for CO selective methanation in H2-rich reformate gases for fuel cell applications, which can deep-remove the CO outlet concentration to below 10 ppm at a selectivity greater than 50% over a wide temperature range of 210–285 °C. The reason for the excellent performance of Ru/Ni-TNTs catalyst is mainly due to the increased specific surface area and thermal stability of Ni-TNTs support, the improved dispersion of supported Ru nanoparticles, and the enhanced chemisorption capability for CO.


Ni Dope TiO2 nanotubes Thermal stability Catalysts CO selective methanation 



This work was financially supported by the National Natural Science Foundation of China (No. 21376102) and the Natural Science Foundation of Guangdong Province, China (No. S2013010012199).

Supplementary material

11144_2018_1362_MOESM1_ESM.docx (1.6 mb)
Supplementary material 1 (DOCX 1686 kb)


  1. 1.
    Dagle RA, Wang Y, Xia GG, Strohm JJ, Holladay J, Palo DR (2007) Selective CO methanation catalysts for fuel processing applications. Appl Catal A 326:213–218CrossRefGoogle Scholar
  2. 2.
    Panagiotopoulou P, Kondarides DI, Verykios XE (2009) Selective methanation of CO over supported Ru catalysts. Appl Catal B 88:470–478CrossRefGoogle Scholar
  3. 3.
    Tada S, Kikuchi R, Takagaki A, Sugawara T, Ted Oyama S, Satokawa S (2014) Effect of metal addition to Ru/TiO2 catalyst on selective CO methanation. Catal Today 232:16–21CrossRefGoogle Scholar
  4. 4.
    Djinović P, Galletti C, Specchia S, Specchia V (2011) Ru-based catalysts for CO selective methanation reaction in H2-rich gases. Catal Today 164:282–287CrossRefGoogle Scholar
  5. 5.
    Urasaki K, Endo K, Takahiro T, Kikuchi R, Kojima T, Satokawa S (2010) Effect of support materials on the selective methanation of CO over Ru catalysts. Top Catal 53:707–711CrossRefGoogle Scholar
  6. 6.
    Bavykin DV, Lapkin AA, Plucinski PK, Friedrich JM, Walsh FC (2005) TiO2 nanotube-supported ruthenium(III) hydrated oxide: a highly active catalyst for selective oxidation of alcohols by oxygen. J Catal 235:10–17CrossRefGoogle Scholar
  7. 7.
    An H, Hu P, Hu X, Zhao W, Zhu B, Wang S, Zhang S, Huang W (2013) Characterization of Pt catalysts supported by three forms of TiO2 and their catalytic activities for hydrogenation. React Kinet Mech Cat 108:117–126CrossRefGoogle Scholar
  8. 8.
    Hu F, Ding F, Song S, Shen PK (2006) Pd electrocatalyst supported on carbonized TiO2 nanotube for ethanol oxidation. J Power Sources 163:415–419CrossRefGoogle Scholar
  9. 9.
    Sudant G, Baudrin E, Larcher D, Tarascon JM (2005) Electrochemical lithium reactivity with nanotextured anatase-type TiO2. J Mater Chem 15:1263Google Scholar
  10. 10.
    Yan D, Yu C, Zhang X, Li J, Li J, Lu T, Pan L (2017) Enhanced electrochemical performances of anatase TiO2 nanotubes by synergetic doping of Ni and N for sodium-ion batteries. Electrochim Acta 254:130–139CrossRefGoogle Scholar
  11. 11.
    Liu H, Liu G, Zhou Q, Xie G, Hou Z, Zhang M, He Z (2011) Preparation and photocatalytic activity of Gd3+-doped trititanate nanotubes. Microporous Mesoporous Mater 142:439–443CrossRefGoogle Scholar
  12. 12.
    Su Y, Chen S, Quan X, Zhao H, Zhang Y (2008) A silicon-doped TiO2 nanotube arrays electrode with enhanced photoelectrocatalytic activity. Appl Surf Sci 255:2167–2172CrossRefGoogle Scholar
  13. 13.
    Nakajima T, Lee C, Yang Y, Schmuki P (2013) N-Doped lepidocrocite nanotubular arrays: hydrothermal formation from anodic TiO2 nanotubes and enhanced visible light photoresponse. J Mater Chem A 1:1860–1866CrossRefGoogle Scholar
  14. 14.
    Lu D, Fang P, Liu Y, Liu Z, Liu X, Gao Y, Chen F, Niu F (2014) A facile one-pot synthesis of gadolinium doped TiO2-based nanosheets with efficient visible light-driven photocatalytic performance. J Nanopart Res 16:1–12Google Scholar
  15. 15.
    Lu C, Guan W, Hoang TKA, Guo J, Gou H, Yao Y (2016) Visible-light-driven catalytic degradation of ciprofloxacin on metal (Fe Co, Ni) doped titanate nanotubes synthesized by one-pot approach. J Mater Sci 27:1966–1973Google Scholar
  16. 16.
    Zhang M, Jin ZS, Zhang JW, Guo XY, Yang HJ, Li W, Wang XD, Zhang ZJ (2004) Effect of annealing temperature on morphology, structure and photocatalytic behavior of nanotubed H2Ti2O4(OH)2. J Mol Catal A 217:203–210CrossRefGoogle Scholar
  17. 17.
    Qamar M, Yoon CR, Oh HJ, Kim DH, Jho JH, Lee KS, Lee WJ, Lee HG, Kim SJ (2006) Effect of post treatments on the structure and thermal stability of titanate nanotubes. Nanotechnology 17:5922–5929CrossRefGoogle Scholar
  18. 18.
    Teng H, Xu S, Sun D, Zhang Y (2013) Preparation of Fe-Doped TiO2 nanotubes and their photocatalytic activities under visible light. Int J Photoenergy 2013:1–7CrossRefGoogle Scholar
  19. 19.
    Zhang J, Zhang J, Jin Z, Wu Z, Zhang Z (2012) Electrochemical lithium storage capacity of nickel mono-oxide loaded anatase titanium dioxide nanotubes. Ionics 18:861–866CrossRefGoogle Scholar
  20. 20.
    Qin R, Ding DY, Ning CQ, Liu HG, Zhu BS, Li M, Mao DL (2011) Ni-doped TiO2 nanotube arrays on shape memory alloy. Appl Surf Sci 257:6308–6813CrossRefGoogle Scholar
  21. 21.
    Wang H, Yang Y, Wei J, Le L, Liu Y, Pan C, Fang P, Xiong R, Shi J (2012) Effective photocatalytic properties of N doped Titanium dioxide nanotube arrays prepared by anodization. React Kinet Mech Cat 106:341–353CrossRefGoogle Scholar
  22. 22.
    Wu Z, Dong F, Zhao W, Wang H, Liu Y, Guan B (2009) The fabrication and characterization of novel carbon doped TiO2 nanotubes, nanowires and nanorods with high visible light photocatalytic activity. Nanotechnology 20:235701CrossRefPubMedGoogle Scholar
  23. 23.
    Su Y, Chen S, Quan X, Zhao H, Zhang Y (2008) A silicon-doped TiO2 nanotube arrays electrode with enhanced photoelectrocatalytic activity. Appl Surf Sci 255:2167–2172CrossRefGoogle Scholar
  24. 24.
    Liu Q, Ding D, Ning C (2014) Anodic fabrication of Ti-Ni-O nanotube arrays on shape memory alloy. Materials 7:3262–3273CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Kim DH, Lee KS, Yoon JH, Jang JS, Choi D, Sun Y, Kim S, Lee KS (2008) Synthesis and electrochemical properties of Ni doped titanate nanotubes for lithium ion storage. Appl Surf Sci 254:7718–7722CrossRefGoogle Scholar
  26. 26.
    Karthik K, Pandian SK, Jaya NV (2010) Effect of nickel doping on structural, optical and electrical properties of TiO2 nanoparticles by sol-gel method. Appl Surf Sci 256:6829–6833CrossRefGoogle Scholar
  27. 27.
    Chen A, Miyao T, Higashiyama K, Yamashita H, Watanabe M (2010) High catalytic performance of ruthenium-doped mesoporous nickel-aluminum oxides for selective CO methanation. Angew Chem Int Edit 49:9895–9898CrossRefGoogle Scholar
  28. 28.
    Dai X, Liang J, Ma D, Zhang X, Zhao H, Zhao B, Guo Z, Kleitz F, Qiao S (2015) Large-pore mesoporous RuNi-doped TiO2-Al2O3 nanocomposites for highly efficient selective CO methanation in hydrogen-rich reformate gases. Appl Catal B 165:752–762CrossRefGoogle Scholar
  29. 29.
    Mohaideen KK, Kim W, Koo KY, Yoon WL (2015) Highly dispersed Ni particles on Ru/NiAl catalyst derived from layered double hydroxide for selective CO methanation. Catal Commun 60:8–13CrossRefGoogle Scholar
  30. 30.
    Chen A, Miyao T, Higashiyama K, Watanabe M (2014) High catalytic performance of mesoporous zirconia supported nickel catalysts for selective CO methanation. Catal Sci Technol 4:2508–2511CrossRefGoogle Scholar
  31. 31.
    Wang C, Ping D, Dong X, Dong Y, Zang Y (2016) Construction of Ru/Ni-Al-oxide/Ni-foam monolithic catalyst for deep-removing CO in hydrogen-rich gas via selective methanation. Fuel Process Technol 148:367–371CrossRefGoogle Scholar
  32. 32.
    Kimura M, Miyao T, Komori S, Chen A, Higashiyama K, Yamashita H, Watanabe M (2010) Selective methanation of CO in hydrogen-rich gases involving large amounts of CO2 over Ru-modified Ni-Al mixed oxide catalysts. Appl Catal A 379:182–187CrossRefGoogle Scholar
  33. 33.
    Song G, Chu Z, Jin W, Sun H (2015) Enhanced performance of gC3N4/TiO2 photocatalysts for degradation of organic pollutants under visible light. Chin J Chem Eng 23:1326–1334CrossRefGoogle Scholar
  34. 34.
    Deng L, Wang S, Liu D, Zhu B, Huang W, Wu S, Zhang S (2009) Synthesis, characterization of Fe-doped TiO2 nanotubes with high photocatalytic activity. Catal Lett 129:513–518CrossRefGoogle Scholar
  35. 35.
    Kim DH, Jang JS, Goo NH, Kwon MS, Lee JW, Choi SH, Shin DW, Kim S, Lee KS (2009) Structural characterization and effect of dehydration on the Ni-doped titanate nanotubes. Catal Taday 146:230–233CrossRefGoogle Scholar
  36. 36.
    Liu H, Liu G, Xie G, Zhang M, Hou Z, He Z (2011) Gd3+, N codoped trititanate nanotubes: preparation, characterization and photocatalytic activity. Appl Surf Sci 257:3728–3732CrossRefGoogle Scholar
  37. 37.
    Huang C, Liu X, Liu Y, Wang Y (2006) Room temperature ferromagnetism of Co-doped TiO2 nanotube arrays prepared by sol-gel template synthesis. Chem Phys Lett 432:468–472CrossRefGoogle Scholar
  38. 38.
    Zhang A, Zhang Z, Chen J, Sheng W, Sun L, Xiang J (2015) Effect of calcination temperature on the activity and structure of MnOx/TiO2 adsorbent for Hg0 removal. Fuel Process Technol 135:25–33CrossRefGoogle Scholar
  39. 39.
    Liu Q, Ding D, Ning C, Wang X (2015) Black Ni-doped TiO2 photoanodes for high-efficiency photoelectrochemical water-splitting. Int J Hydrogen Energy 40:2107–2114CrossRefGoogle Scholar
  40. 40.
    Zhang M, Lu D, Yan G, Wu J, Yang J (2013) Fabrication of Mo+N Codoped TiO2 nanotube arrays by anodization and sputtering for visible light-induced photoelectrochemical and photocatalytic properties. J Nanomater 2013:1–9Google Scholar
  41. 41.
    Li X, Meng F, Cheng Y, Gao Y, Li Z (2017) Catalytic methanation in a slurry-bed reactor over Ni/SiO2 catalysts: improvement by ZrO2 and β-cyclodextrin addition. React Kinet Mech Cat 122:525–538CrossRefGoogle Scholar
  42. 42.
    Ping D, Dong X, Zang Y, Feng X (2017) Highly efficient MOF-templated Ni catalyst towards CO selective methanation in hydrogen-rich reformate gases. Int J Hydrogen Energy 42:15551–15556CrossRefGoogle Scholar
  43. 43.
    Ribeiro LS, Delgado JJ, Órfão JJM, Pereira MFR (2017) Carbon supported Ru-Ni bimetallic catalysts for the enhanced one-pot conversion of cellulose to sorbitol. Appl Catal B 217:265–274CrossRefGoogle Scholar
  44. 44.
    Tian J, Gao H, Deng H, Sun L, Kong H, Yang P, Chu J (2013) Structural, magnetic and optical properties of Ni-doped TiO2 thin films deposited on silicon (100) substrates by sol–gel process. J Alloy Compd 581:318–323CrossRefGoogle Scholar
  45. 45.
    Tao M, Xin Z, Meng X, Lv Y, Bian Z (2016) Impact of double-solvent impregnation on the Ni dispersion of Ni/SBA-15 catalysts and catalytic performance for the syngas methanation reaction. RSC Adv 6:35875–35883CrossRefGoogle Scholar
  46. 46.
    Shimoda N, Shoji D, Tani K, Fujiwara M, Urasaki K, Kikuchi R, Satokawa S (2015) Role of trace chlorine in Ni/TiO2 catalyst for CO selective methanation in reformate gas. Appl Catal B 174:486–495CrossRefGoogle Scholar
  47. 47.
    Miyao T, Shen W, Chen A, Higashiyama K, Watanabe M (2014) Mechanistic study of the effect of chlorine on selective CO methanation over Ni alumina-based catalysts. Appl Catal A 486:187–192CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhouPeople’s Republic of China

Personalised recommendations