Advertisement

Reaction Kinetics, Mechanisms and Catalysis

, Volume 124, Issue 2, pp 807–822 | Cite as

Catalytic performance of the modified H-ZSM-5 zeolite in methanol transformation to hydrocarbons

  • Antonina A. Stepacheva
  • Valentin Yu. Doluda
  • Natalia V. Lakina
  • Vladimir P. Molchanov
  • Alexander I. Sidorov
  • Valentina G. Matveeva
  • Mikhail G. Sulman
  • Esther M. Sulman
Article
  • 126 Downloads

Abstract

In the current work, we present the study of the catalytic performance and characterization of the modified H-ZSM-5 zeolite for methanol to hydrocarbons process. The modification of zeolite was performed by both alkali and acid treatment. The changes in the zeolite structure were studied using low-temperature nitrogen physisorption, NH3 chemisorption, and X-Ray photoelectron spectroscopy. It was found that the zeolite modification with oxalic acid (0.01 M) resulted in the lower catalytic activity loss (48%) after 120 h on stream as compared to both initial and alkali treated H-ZSM-5. Further, the chosen zeolite sample was modified with Co, Fe, and Ni by wet impregnation with the corresponding metal nitrates. The Ni-containing catalyst showed the highest catalytic performance in time on stream. The decrease in the methanol transformation rate for the Ni-containing zeolite was found to be only 27%. The metal-containing catalysts showed the minimal coke formation as well as the minimal decrease in acidity and surface area as compared to the initial zeolite and the samples treated with both alkali and oxalic acid.

Keywords

Methanol-to-hydrocarbons process H-ZSM-5 Desilication Dealumination C5+ hydrocarbons 

Abbreviations

MTO

Methanol to olefins

MTH

Methanol to hydrocarbons

MTS

Methanol to syn-fuel

DME

Dimethyl ether

XPS

X-ray photoelectron spectroscopy

TEM

Transmission electron microscopy

Notes

Acknowledgements

This work was supported by the Ministry of Science and Education of the Russian Federation.

Supplementary material

11144_2018_1359_MOESM1_ESM.docx (265 kb)
Supplementary material 1 (DOCX 265 kb)

References

  1. 1.
    Lee E, Cheng Z, Lo CS (2015) Catalysis 27:187–208CrossRefGoogle Scholar
  2. 2.
    Sousa-Aguiar EF, Appel LG (2011) Catalysis 23:284–315CrossRefGoogle Scholar
  3. 3.
    Dinjus E, Arnold U, Dahmen N, Hofer R, Wach W (2009) In: Hofer R (ed) RSC green chemistry no. 4, sustainable solutions for modern economies. The Royal Society of Chemistry, LondonGoogle Scholar
  4. 4.
    Le Bel JA, Greene WH (1880) Am Chem J 2:19–20Google Scholar
  5. 5.
    Sernagiotto E (1914) Gazz Chim Ital 44(1):51–56Google Scholar
  6. 6.
    Grosse AV, Snyder JC (1950) US Patent 2493038AGoogle Scholar
  7. 7.
    Topchiev KV, Ballod AV (1951) Russ Chem Rev 20(2):161–175Google Scholar
  8. 8.
    Gorin E, Gorin MH (1948) US Patent 2456584 AGoogle Scholar
  9. 9.
    Chang CD, Silvestri AJ (1977) J Catal 47:249–259CrossRefGoogle Scholar
  10. 10.
    Chen NY, Reagan WJ (1979) J Catal 59:123–129CrossRefGoogle Scholar
  11. 11.
    Chang CD, Lang WH, Smith RL (1979) J Catal 56:169–173CrossRefGoogle Scholar
  12. 12.
    Harney BM, Mills GA (1980) Hydrocarb Process 64:67–71Google Scholar
  13. 13.
    Diebold J, Scahill J (1988) In: Soltes J, Milne TA (eds) Pyrolysis oils from biomass. American Chemical Society, Washington, DCGoogle Scholar
  14. 14.
    Chang CD (1999) In: Song C, Garces JM, Sugi Y (eds) Shape-selective catalysis: chemicals synthesis and hydrocarbon processing. American Chemical Society, Washington, DCGoogle Scholar
  15. 15.
    Baek S-C, Lee Y-J, Jun K-W, Hong SB (2009) Energy Fuels 23:593–598CrossRefGoogle Scholar
  16. 16.
    Chen D, Moljord K, Holmen A (2012) Microporous Mesoporous Mater 164:239–250CrossRefGoogle Scholar
  17. 17.
    Min H-K, Park MB, Hong SB (2010) J Catal 271:186–194CrossRefGoogle Scholar
  18. 18.
    Wang P, Huang L, Li J, Dong M, Wang J, Tatsumi T, Fan W (2015) RSC Adv 5:28794–28802CrossRefGoogle Scholar
  19. 19.
    Huang L, Wang P, Li J, Wang J, Fan W (2016) Microporous Mesoporous Mater 223:230–240CrossRefGoogle Scholar
  20. 20.
    Chen J, Liang T, Li J, Wang S, Qin Z, Wang P, Huang L, Fan W, Wang J (2016) ACS Catal 6:2299–2313CrossRefGoogle Scholar
  21. 21.
    Mei C, Wen P, Liu Z, Liu H, Wang Y, Yang W (2008) J Catal 25:8243–8249Google Scholar
  22. 22.
    Zaidi HA, Pant KK (2004) Catal Today 96:155–160CrossRefGoogle Scholar
  23. 23.
    Qi L, Wei Y, Xu L, Liu ZM (2015) ACS Catal 5(7):3973–3982CrossRefGoogle Scholar
  24. 24.
    Pérez-Uriarte P, Gamero M, Ateka A, Díaz M, Aguayo AT, Bilbao J (2016) Ind Eng Chem Res 55(6):1513–1521CrossRefGoogle Scholar
  25. 25.
    Beeckman JW, Froment GF (1979) Ind Eng Chem Fundam 18(3):245–256CrossRefGoogle Scholar
  26. 26.
    Beeckman JW, Froment GF (1982) Ind Eng Chem Fundam 27:243–250CrossRefGoogle Scholar
  27. 27.
    Benito PL, Gayubo AG, Aguayo AT, Olazar M, Bilbao J (1996) Ind Eng Chem Res 35:3991–3998CrossRefGoogle Scholar
  28. 28.
    Schulz H (2010) Catal Today 154:183–194CrossRefGoogle Scholar
  29. 29.
    Bleken FL, Barbera K, Bonino F, Olsbye U, Lillerud KP, Bordiga S, Beato P, Janssens TVW, Svelle S (2013) J Catal 307:62–73CrossRefGoogle Scholar
  30. 30.
    Brogaard RY, Weckhuysen BM, Nørskov JK (2013) J Catal 300:235–241CrossRefGoogle Scholar
  31. 31.
    Ramasamy KK, Gerber MA, Flake M, Zhang H, Wang Y (2014) Green Chem 16(2):748–760CrossRefGoogle Scholar
  32. 32.
    Palumbo L, Bonino F, Beato P, Bjørgen M, Zecchina A, Bordiga S (2008) J Phys Chem C 112:9710–9716CrossRefGoogle Scholar
  33. 33.
    Li M, Zhou Y, Ju C, Fang Y (2016) Appl Catal A 512:1–8CrossRefGoogle Scholar
  34. 34.
    Wan W, Fu T, Qi R, Shao J, Li Z (2016) Ind Eng Chem Res 55(51):13040–13049CrossRefGoogle Scholar
  35. 35.
    Wan Z, Wu W, Li GK, Wang C, Yang H, Zhang D (2016) Appl Catal A 523(5):312–320CrossRefGoogle Scholar
  36. 36.
    Meng F, Wang Y, Wang S (2016) RSC Adv 6:58586–58593CrossRefGoogle Scholar
  37. 37.
    Bjørgen M, Joensen F, Holm MS, Olsbye U, Lillerud K-P, Svelle S (2008) Appl Catal A 345:43–50CrossRefGoogle Scholar
  38. 38.
    Ahmadpour J, Taghizadeh M (2015) C R Chim 18(8):834–847CrossRefGoogle Scholar
  39. 39.
    He Y, Liu M, Dai C, Xu S, Wei Y, Liu Z, Guo X (2013) Chin J Catal 34:1148–1158CrossRefGoogle Scholar
  40. 40.
    Wang X, Gao X, Dong M, Zhao H, Huang W (2015) J Energy Chem 21(4):490–496CrossRefGoogle Scholar
  41. 41.
    Fattahi M, Behbahani RM, Hamoule T (2016) Fuel 181:248–258CrossRefGoogle Scholar
  42. 42.
    Sadeghi S, Haghighi M, Estifaee P (2015) J Na. Gas Sci Eng 24:302–310CrossRefGoogle Scholar
  43. 43.
    Dagle RA, Lizarazo-Adarme JA, Lebarbier Dagle V, Gray MJ, White JF, King DL, Palo D (2014) Fuel Process Technol 123:65–74CrossRefGoogle Scholar
  44. 44.
    Wang C, Zhang D, Fang C, Ge Q, Xu H (2014) Fuel 134:11–16CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Antonina A. Stepacheva
    • 1
  • Valentin Yu. Doluda
    • 1
  • Natalia V. Lakina
    • 1
  • Vladimir P. Molchanov
    • 1
  • Alexander I. Sidorov
    • 1
  • Valentina G. Matveeva
    • 1
    • 2
  • Mikhail G. Sulman
    • 1
    • 3
  • Esther M. Sulman
    • 1
  1. 1.Tver State Technical UniversityTverRussia
  2. 2.Tver State UniversityTverRussia
  3. 3.A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of SciencesMoscowRussia

Personalised recommendations