Advertisement

Carbon-encapsulated Fe3O4 for catalyzing the aerobic oxidation of benzyl alcohol and benzene

  • Liming Sun
  • Wenwen Zhan
  • Jiang Shang
  • Guojian Chen
  • Shixuan Wang
  • Yuqin Chen
  • Zhouyang LongEmail author
Article
  • 18 Downloads

Abstract

A carbon-encapsulated Fe3O4 (Fe3O4@C) was prepared by a simple solvothermal method. The obtained Fe3O4@C was characterized using X-ray diffraction, scanning electron microscopy, transmission electron microscopy and nitrogen adsorption–desorption isotherm measurement. The core–shell structured Fe3O4@C could efficiently catalyze the solvent-free aerobic oxidation of benzyl alcohol to benzaldehyde with ambient O2 as the oxidant. The uniform interface between the core Fe3O4 and the shell C accounted for the superior catalytic activity of Fe3O4@C. A possible catalytic process following the known Mars-van Krevelen mechanism was described. The target catalyst could be magnetically recycled and exhibited good potential for catalyst reuse. Besides, the activity of Fe3O4@C was also investigated for catalyzing the reductant-free aerobic hydroxylation of benzene to phenol with O2 as the oxidant.

Keywords

Carbon-encapsulated Fe3O4 Magnetically recoverable Selective oxidation Benzyl alcohol Benzene 

Notes

Acknowledgements

The authors are thankful to financial support from the NSFC (Nos. 21503098, 21701063 and 21603089), Jiangsu Province Science Foundation for Youths (BK20150237 and BK20160209), NSF of the Higher Education Institutions of Jiangsu Province (16KJB150014).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11144_2018_1529_MOESM1_ESM.pdf (633 kb)
Supplementary material 1 (PDF 633 kb)

References

  1. 1.
    Geng LL, Zhang XY, Zhang WX, Jia MJ, Liu G (2014) Chem Commun 50:2965–2967CrossRefGoogle Scholar
  2. 2.
    Geng LL, Zheng B, Wang X, Zhang WX, Wu SJ, Jia MJ, Yan WF, Liu G (2016) ChemCatChem 8:805–811CrossRefGoogle Scholar
  3. 3.
    Hudson R (2014) FengYT, Varma RS, Moores A. Green Chem 16:4493–4505CrossRefGoogle Scholar
  4. 4.
    Sharma RK, Dutta S, Sharma S, Zboril R, Varma RS, Gawande MB (2016) Green Chem 18:3184–3209CrossRefGoogle Scholar
  5. 5.
    Xie LL, Wang HX, Lu B, Zhao JX, Cai QH (2018) React Kinet Mech Catal 125:743–756CrossRefGoogle Scholar
  6. 6.
    Martins N, Martins L, Amorim C, Amaral V, Pombeiro A (2017) Catalysts 7:222CrossRefGoogle Scholar
  7. 7.
    Zheng C, He G, Xiao X, Lu M, Zhong H, Zuo X, Nan J (2017) Appl Catal B 205:201–210CrossRefGoogle Scholar
  8. 8.
    Geng LL, Zhang M, Zhang WX, Jia MJ, Yan WF, Liu G (2015) Catal Sci Technol 5:3097–3102CrossRefGoogle Scholar
  9. 9.
    Long ZY, Sun LM, Zhu WJ, Chen GJ, Wang XC, Sun W (2018) Chem Commun 54:8991–8994CrossRefGoogle Scholar
  10. 10.
    Wang Q, Cai XC, Liu YQ, Xie JY (2016) Zhou, Wang. J Appl Catal B: Environ 89:242–251CrossRefGoogle Scholar
  11. 11.
    Zhao GF, Yang F, Chen ZJ, Liu QF, Ji YJ, Zhang Y, Niu ZQ, Mao JJ, Bao XH, Hu PJ, Li YD (2017) Nat Commun 8:14039CrossRefGoogle Scholar
  12. 12.
    Parmeggiani C, Matassini C, Cardona F (2017) Green Chem 19:2030–2050CrossRefGoogle Scholar
  13. 13.
    Shylesh S, Schünemann V, Thiel WR (2010) Angew Chem Int Ed 49:3428–3459CrossRefGoogle Scholar
  14. 14.
    Long ZY, Zhou Y, Chen GJ, Zhao PP, Wang J (2014) Chem Eng J 239:19–25CrossRefGoogle Scholar
  15. 15.
    Antonyraj CA, Kannan S (2013) Catal Surv Asia 17:47–70CrossRefGoogle Scholar
  16. 16.
    Sarma BB, Carmieli R, Collauto A, Efremenko I, Martin JM, Neumann R (2016) ACS Catal 6:6403–6407CrossRefGoogle Scholar
  17. 17.
    Shang SS, Yang H, Li J, Chen B, Lv Y, Gao S (2014) ChemPlusChem 79:680–683CrossRefGoogle Scholar
  18. 18.
    Long ZY, Liu YQ, Zhao PP, Wang Q, Zhou Y, Wang J (2015) Catal Commun 59:1–4CrossRefGoogle Scholar
  19. 19.
    Gao XH, Lv XC, Xu J (2010) Kinet Catal 51:394–397CrossRefGoogle Scholar
  20. 20.
    Long ZY, Zhou Y, Chen GJ, Ge WL, Wang J (2014) Sci Rep 4:3651CrossRefGoogle Scholar
  21. 21.
    Luo GH, Lv XC, Wang XW, Yan S, Gao XH, Xu J, Ma H, Jiao YJ, Li FY, Chen JZ (2015) RSC Adv 5:94164–94170CrossRefGoogle Scholar
  22. 22.
    Cai XC, Wang Q, Liu YQ, Xie JY, Long ZY, Zhou Y, Wang J (2016) ACS Sustain Chem Eng 4:4986–4996CrossRefGoogle Scholar
  23. 23.
    Qin Q, Liu YQ, Shan WJ, Hou W, Wang K, Ling XC, Zhou Y, Wang J (2017) Ind Eng Chem Res 56:12289–12296CrossRefGoogle Scholar
  24. 24.
    Long ZY, Chen GJ (2018) Liu Sa, Huang FM, Sun LM, Qin ZL, Wang Q, Zhou Y, Wang. J Chem Eng J 334:873–881CrossRefGoogle Scholar
  25. 25.
    Wang H, Sun YB, Chen QW, Yu YF, Cheng K (2010) Dalton Trans 39:9565–9569CrossRefGoogle Scholar
  26. 26.
    Ramazani A, Khoobi M, Sadri F, Tarasi R, Shafiee A, Aghahosseini H, Joo SW (2018) Appl Organomet Chem 32:e3908CrossRefGoogle Scholar
  27. 27.
    Wang H, Chen QW, Yu YF, Cheng K, Sun YB (2011) J Phys Chem C 115:11427–11434CrossRefGoogle Scholar
  28. 28.
    Wang H, Shen J, Li YY, Wei ZY, Cao GX, Gai Z, Hong KL, Banerjeea P, Zhou SQ (2014) Biomater Sci 2:915–923CrossRefGoogle Scholar
  29. 29.
    Shi WP, Liu WF, Chen L, Qin L, Yang YZ, Liu XG (2015) RSC Adv 5:106787–106794CrossRefGoogle Scholar
  30. 30.
    Guo Z, Liu B, Zhang QH, Deng WP, Wang Y, Yang YH (2014) Chem Soc Rev 43:3480–3524CrossRefGoogle Scholar
  31. 31.
    Makwana VD, Son Y-C, Howell AR, Suib SL (2002) J Catal 210:46–52CrossRefGoogle Scholar
  32. 32.
    Hu ZG, Zhao YF, Liu JD, Wang JT, Zhang B, Xiang X (2014) J Colloid Interface Sci 421:1–5CrossRefGoogle Scholar
  33. 33.
    Yang JH, Sun G, Gao Y, Zhao H, Tang P, Tan J, Lu AH, Ma D (2013) Energy Environ Sci 6:793–798CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional MaterialsJiangsu Normal UniversityXuzhouChina
  2. 2.Institute of Advanced MaterialsNanjing Tech UniversityNanjingChina

Personalised recommendations