Advertisement

Reaction Kinetics, Mechanisms and Catalysis

, Volume 123, Issue 2, pp 473–484 | Cite as

Enthalpy-entropy compensation effect and other aspects of isoparametricity in reactions between trans-2,3-bis(3-bromo-5-nitrophenyl)oxirane and arenesulfonic acids

  • Igor Shpan’koEmail author
  • Irina Sadovaya
Article

Abstract

It was found that as a result of the non-additivity (interaction) of joint effects of structure and temperature on the rate and free energy of activation of the reactions between trans-2,3-bis(3-bromo-5-nitrophenyl)oxirane and Y-substituted arenesulfonic acids YC6H4SO3H in a mixture of dioxane with 1,2-dichloroethane (7 : 3/v : v) at 265, 281, and 298 K, the cross reaction series exhibits isoparametric properties. At a temperature of 265 K, close to the isoparametric temperature point 262 K (isokinetic temperature), the free energy of activation and the rate of oxirane ring opening process do not depend on the structure of the substituent Y due to the enthalpy-entropy compensation effect. At the isoparametric point with respect to the constant of substituent Y (σY = 0.20), the free activation energy does not depend on temperature.

Keywords

Oxirane ring opening trans-2,3-bis(3-bromo-5-nitrophenyl)oxirane Arenesulfonic acids Isoparametricity phenomenon Compensation effect 

References

  1. 1.
    Krug RR, Hunter WG, Grieger RA (1976) Statistical interpretation of enthalpy–entropy compensation. Nature 261:566–567.  https://doi.org/10.1038/261566a0 CrossRefGoogle Scholar
  2. 2.
    Liu L, Guo Q-X (2001) Isokinetic relationship, isoequilibrium relationship, and enthalpy—entropy compensation. Chem Rev 101(3):673–696.  https://doi.org/10.1021/cr990416z CrossRefGoogle Scholar
  3. 3.
    Sharp K (2001) Entropy—enthalpy compensation: Fact or artifact? Protein Sci 10(3):661–667.  https://doi.org/10.1110/ps.37801 CrossRefGoogle Scholar
  4. 4.
    Cornish-Bowden A (2002) Enthalpy-entropy compensation: a phantom phenomenon. J Biosci 27(2):121–126.  https://doi.org/10.1007/BF02703768 CrossRefGoogle Scholar
  5. 5.
    Starikov EB, Norden B (2007) Enthalpy—entropy compensation: a phantom or something useful. J Phys Chem B 111(51):14431–14435.  https://doi.org/10.1021/jp075784i CrossRefGoogle Scholar
  6. 6.
    Norwisz J, Musielak T (2007) Compensation low again. J Therm Anal Calorim 88(3):751–755.  https://doi.org/10.1007/s10973-006-8139-4 CrossRefGoogle Scholar
  7. 7.
    Barrie PJ (2012) The mathematical origins of the kinetic compensation effect: 1. the effect of random experimental errors. Phys Chem Chem Phys 14:318–326.  https://doi.org/10.1039/c1cp22666e CrossRefGoogle Scholar
  8. 8.
    Barrie PJ (2012) The mathematical origins of the kinetic compensation effect: 2. the effect of systematic errors. Phys Chem Chem Phys 14:327–336.  https://doi.org/10.1039/c1cp22667c CrossRefGoogle Scholar
  9. 9.
    Yelon A, Sacher E, Linert W (2012) Comment on “The mathematical origins of the kinetic compensation effect” Parts 1 and 2 by P. J. Barrie, Phys. Chem. Chem. Phys., 2012, 14, 318 and 327. Phys Chem Chem Phys 14:8232–8234.  https://doi.org/10.1039/c2cp40618g
  10. 10.
    Barrie PJ (2012) Reply to ‘Comment on “The mathematical origins of the kinetic compensation effect” Parts 1 and 2 by A. Yelon, E. Sacher and W. Linert, Phys. Chem. Chem. Phys., 2012, 14,  https://doi.org/10.1039/c2cp40618g. Phys Chem Chem Phys 14:8235–8236.  https://doi.org/10.1039/c2cp41022b
  11. 11.
    Koudriavtsev AB, Linert W (2013) Do experimental errors really cause isoequilibrium and isokinetic relationships? MATCH Commun Math Comput Chem 70:7–28Google Scholar
  12. 12.
    Perez-Benito JF, Mulero-Raichs M (2016) Enthalpy–entropy compensation effect in chemical kinetics and experimental errors: a numerical simulation approach. J Phys Chem A 120(39):7598–7609.  https://doi.org/10.1021/acs.jpca.6b08079 CrossRefGoogle Scholar
  13. 13.
    Pan A, Biswas T, Rakshit AK, Moulik SP (2015) Enthalpy-entropy compensation (EEC) effect: a revisit. J Phys Chem B 119(52):15876–15884.  https://doi.org/10.1021/acs.jpcb.5b09925 CrossRefGoogle Scholar
  14. 14.
    Pan A, Kar T, Rakshit AK, Moulik SP (2016) Enthalpy—entropy compensation (EEC) effect: decisive role of free energy. J Phys Chem B 120(40):10531–10539.  https://doi.org/10.1021/acs.jpcb.6b05890 CrossRefGoogle Scholar
  15. 15.
    Cornish-Bowden A (2017) Enthalpy–entropy compensation and the isokinetic temperature in enzyme catalysis. J Biosci 42(4):665–670.  https://doi.org/10.1007/s12038-017-9719-0
  16. 16.
    Pail’m VA (1977) Bases of the quantitative theory of organic reactions. Khimiya, LeningradGoogle Scholar
  17. 17.
    Linert W, Jameson RF (1989) The isokinetic relationship. Chem Soc Rev 18:477–505.  https://doi.org/10.1039/cs9891800477
  18. 18.
    Linert W (1994) Mechanistic and structural investigations based on the isokinetic relationship. Chem Soc Rev 23(6):429–438.  https://doi.org/10.1039/CS9942300429 CrossRefGoogle Scholar
  19. 19.
    Shpan’ko IV, Sadovaya IV (2010) Enthalpy–entropy compensation effect in reactions of 3,5-dinitrophenyloxiran with arenesulfonic acids: experimental evidence of the phenomenon of isoparametricity. Theoret Experim Chem 46(3):176–181.  https://doi.org/10.1007/s11237-010-9136-z CrossRefGoogle Scholar
  20. 20.
    Shpan’ko IV, Sadovaya IV (2011) Joint effect of structure and temperature on the rates of the reactions of 3,5-dinitrophenyloxirane with arenesulfonic acids: compensation effect and isoparametricity. Kinet Catal 52(5):647–653.  https://doi.org/10.1134/S0023158411050132 CrossRefGoogle Scholar
  21. 21.
    Shpan’ko IV, Sadovaya IV (2016) Compensation effect in reactions between trans-4,4′-dinitrostilbene oxide and arylsulfonic acids. Russ J Phys Chem A 90(12):2332–2338.  https://doi.org/10.1134/S0036024416120268 CrossRefGoogle Scholar
  22. 22.
    Bergmann E, Hervey J (1929) Über das Auftreten von freien substituierten Methylenen bei chemischen Reaktionen. Chem Ber 62(4):893–916.  https://doi.org/10.1002/cber.19290620420 CrossRefGoogle Scholar
  23. 23.
    Shpan’ko IV, Sadovaya IV (2016) Phenomenon of isoparametricity in reactions of trans-2,3-diaryloxiranes with arenesulfonic acids. Mechanistic interpretation. Russ J Gen Chem 86(11):2418–2422.  https://doi.org/10.1134/S1070363216110037 CrossRefGoogle Scholar
  24. 24.
    Connors KA (1990) Chemical kinetics: the study of reaction rates in solution. VCH, New York.  https://doi.org/10.1002/bbpc.19910950943 Google Scholar
  25. 25.
    McBane GC (1998) Chemistry from telephone numbers: the false isokinetic relationship. J Chem Educ 75(7):919–922.  https://doi.org/10.1021/ed075p919 CrossRefGoogle Scholar
  26. 26.
    Shpan’ko IV, Sadovaya IV (2013) Isoparametricity paradox in the pyridine-catalyzed reaction of phenyloxirane with 3-nitrobenzoic acid. Russ J Phys Chem A 87(12):1955–1959.  https://doi.org/10.1134/S0036024413120224 CrossRefGoogle Scholar
  27. 27.
    Shpan’ko IV, Sadovaya IV (2014) Isoparametricity phenomenon and kinetic enthalpy–entropy compensation effect: experimental evidence obtained by investigating pyridine-catalyzed reactions of phenyloxirane with benzoic acids. Kinet Catal 55(1):56–63.  https://doi.org/10.1134/S002315841401011X CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  1. 1.Donetsk National UniversityVinnytsiaUkraine
  2. 2.Donetsk National UniversityDonetskUkraine

Personalised recommendations