Skip to main content
Log in

Light propagation model of titanium dioxide suspensions in water using the radiative transfer equation

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Constructions of numerical schemes for solving the radiative transfer equation (RTE) are crucial to evaluate light propagation inside photocatalytic systems. We develop accurate and efficient schemes of the three-dimensional and time-dependent RTE for numerical phantoms modeling aqueous titanium dioxide suspensions, in which the anisotropy of the forward-directed scattering varies and the strength of absorption is comparable to that of scattering. To improve the accuracy and efficiency of the numerical solutions, the forward-directed phase function is renormalized in the zeroth or first order with a small number of discrete angular directions. Then, we investigate the influences of the forward-directed scattering on the numerical solutions by comparing with the analytical solutions. The investigation shows that with the anisotropy factor less than approximately 0.7 corresponding to the moderate forward-directed scattering, the numerical solutions of the RTE using the both of the zeroth and first order renormalization approaches are accurate due to the reductions of the numerical errors of the phase function. With the anisotropy factor more than approximately 0.7 corresponding to the highly forward-directed scattering, the first order renormalization approach still provides the accurate results, while the zeroth order approach does not due to the large errors of the phase function. These results suggest that the developed scheme using the first order renormalization can provide accurate and efficient calculations of light propagation in photocatalytic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Machalický O, Lichý L, Tomica M, Hrdina R, Šolcová O (2012) Photocatalysis of sulfo and carboxy derivatives of indigo in a TiO2 slurry with the use of polychromatic irradiation. Reac Kinet Mech Cat 107(1):63–77

    Article  Google Scholar 

  2. Grčić I, Vujević D, Žižek K, Koprivanac N (2013) Treatment of organic pollutants in water using TiO2 powders: photocatalysis versus sonocatalysis. Reac Kinet Mech Cat 109(2):335–354

    Article  Google Scholar 

  3. Maruga J, Grieken RV, Alfano OM, Cassano AE (2006) Optical and physicochemical properties of silica-supported TiO2 photocatalysts. AIChE J 52(8):2832–2843

    Article  Google Scholar 

  4. Maruga J, Grieken RV, Cassano AE, Alfano OM (2007) Quantum efficiency of cyanide photooxidation with TiO2/SiO2 catalysts: multivariate analysis by experimental design. Catal Today 129:143–151

    Article  Google Scholar 

  5. Maruga J, Grieken RV, Cassano AE, Alfano OM (2008) Intrinsic kinetic modeling with explicit radiation absorption effects of the photocatalytic oxidation of cyanide with TiO2 and silica-supported TiO2 suspensions. Appl Catal B 85:48–60

    Article  Google Scholar 

  6. Satuf ML, Brandi RJ, Cassano AE, Alfano OM (2005) Experimental method to evaluate the optical properties of aqueous. Ind Eng Chem Res 44:6643–6649

    Article  CAS  Google Scholar 

  7. Ortiz GB, la Plata D, Alfano OM, Cassano AE (2008) Optical properties of goethite catalyst for heterogeneous photo-Fenton reactions comparison with a titanium dioxide catalyst. Chem Eng J 137:396–410

    Article  Google Scholar 

  8. Chandrasekhar S (1960) Radiative transfer. Dover, New York

    Google Scholar 

  9. Carlson BG, Lee CE (1961) Mechanical Quadrature and the transport equation. Los Alamos Scientific Laboratory Report 2573

  10. Gibson AP, Hebden JC, Arridge SR (2005) Recent advances in diffuse optical imaging. Phys Med Biol 50(4):R1–R43

    Article  CAS  Google Scholar 

  11. Yamada Y, Okawa S (2014) Diffuse optical tomography: present status and its future. Opt Rev 21(3):185–205

    Article  Google Scholar 

  12. Cheong WF, Prahl SA, Welch AJ (1990) A review of the optical properties of biological tissue. IEEE J Quantum Electron 26(12):2166–2185

    Article  Google Scholar 

  13. Liu L, Ruan L, Tan H (2002) On the discrete ordinates method for radiative heat transfer in anisotropically scattering media. Int J Heat Mass Transf 45(15):3259–3262

    Article  Google Scholar 

  14. Long F, Li F, Intes X, Kotha SP (2016) Radiative transfer equation modeling by streamline diffusion modified continuous Galerkin method. J Biomed Opt 21(3):036003

    Article  Google Scholar 

  15. Fujii H, Okawa S, Yamada Y, Hoshi Y, Watanabe M (2016) Renormalization of the highly forward-peaked phase function using the double exponential formula for radiative transfer. J Math Chem 54(10):2048–2061

    Article  CAS  Google Scholar 

  16. Jacques SL (2013) Optical properties of biological tissues : a review. Phys Med Biol 58:R37–R61

    Article  Google Scholar 

  17. Bashkatov AN, Genina EA, Tuchin VV (2011) Optical properties of skin, subcutaneous, and muscle tissues: a review. J Innov Opt Health Sci 4(1):9–38

    Article  Google Scholar 

  18. Okawa S, Hoshi Y, Yamada Y (2011) Improvement of image quality of time-domain diffuse optical tomography with lp sparsity regularization. Biomed Opt Express 2(12):3334–3348

    Article  Google Scholar 

  19. Kamran F, Abildgaard OHA, Subash AA, Andersen PE, Andersson-engels S, Khoptyar D (2015) Computationally effective solution of the inverse problem in time-of-flight spectroscopy. Opt. Express 23(5):6937–6945

    Article  CAS  Google Scholar 

  20. Henyey LG, Greenstein LJ (1941) Diffuse radiation in the galaxy. J Astrophys 93:70–83

    Article  Google Scholar 

  21. Fiveland WA (1991) The selection of discrete ordinate quadrature sets for anisotropic scattering. ASME, HTD-vol 160, Fundamentals of radiation heat transfer (1991), pp 89–96

  22. Carlson BG (1971) Quadrature Tables of Equal Weight EQn Over the Unit sphere. Los Alamos Scientific Laboratory Report (4734)

  23. Balsara D (2001) Fast and accurate discrete ordinates methods for multidimensional radiative transfer. Part I, basic methods. J Quant Spectrosc Radiat Transf 69:671–707

    Article  CAS  Google Scholar 

  24. Lebedev VI (1975) Values of the nodes and weights of ninth to seventeenth order gauss-markov quadrature formulae invariant under the octahedron group with inversion. USSR Comput Math Math Phys 15(1):44–51

    Article  Google Scholar 

  25. Lebedev VI (1977) Spherical quadrature formulas exact to orders 25–29. Sib Math J 18(1):99–107

    Article  Google Scholar 

  26. Gregersen BA, York DM (2005) High-order discretization schemes for biochemical applications of boundary element solvation and variational electrostatic projection methods. J Chem Phys 122(19):194110

    Article  Google Scholar 

  27. Sanchez R (2012) Prospects in deterministic three-dimensional whole-core transport calculations. Nucl Eng Technol 44(5):113–150

    Article  CAS  Google Scholar 

  28. Takahasi H, Mori M (1974) Double exponential formulas for numerical indefinite integration. Publ RIMS Kyoto Univ 9:721–741

    Article  Google Scholar 

  29. Mori M, Sugihara M (2001) The double-exponential transformation in numerical analysis. J Comput Appl Math 127:287–296

    Article  Google Scholar 

  30. Jiang GS, Shu CW (1996) Efficient implementation of weighted ENO schemes. J Comput Phys 126(1):202–228

    Article  Google Scholar 

  31. Henrick AK, Aslam TD, Powers JM (2005) Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points. J Comput Phys 207(2):542–567

    Article  Google Scholar 

  32. Gottlieb S, Shu CW (1998) Total variation diminishing Runge–Kutta schemes. Math Comput 67(221):73–85

    Article  Google Scholar 

  33. Fujii H, Yamada Y, Kobayashi K, Watanabe M, Hoshi Y (2017) Modeling of light propagation in the human neck for diagnoses of thyroid cancers by diffuse optical tomography. Int J Numer Meth Biomed Engng 33(e2826):1–12

    Google Scholar 

  34. Liemert A, Kienle A (2012) Infinite space Green’s function of the time-dependent radiative transfer equation. Biomed Opt Express 3(3):543

    Article  Google Scholar 

  35. Klose AD, Larsen EW (2006) Light transport in biological tissue based on the simplified spherical harmonics equations. J Comput Phys 220:441–470

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by JSPS KAKENHI Grant Numbers 15K17980, 15K06125, and 16H02155. The first author learned the research topic of photocatalyst at the Mathematics in (bio)Chemical Kinetics and Engineering (MaCKiE) 2017 conference held in Budapest, Hungary, in 2017. We wish to express appreciation to Mr. K. Tabayashi, Mr. S. Endo, and Mr. K. Nomura for fruitful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Fujii.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujii, H., Yamada, Y., Hoshi, Y. et al. Light propagation model of titanium dioxide suspensions in water using the radiative transfer equation. Reac Kinet Mech Cat 123, 439–453 (2018). https://doi.org/10.1007/s11144-017-1328-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-017-1328-2

Keywords

Mathematics Subject Classification

Navigation