Advertisement

Reaction Kinetics, Mechanisms and Catalysis

, Volume 122, Issue 2, pp 729–740 | Cite as

Kinetics and thermodynamics of the reaction of iminodiacetate copper(II) complexes with 1,10-phenanthroline and 2,2′-bipyridine in aqueous, anionic, cationic and nonionic surfactants solutions

  • Joanna Drzeżdżon
  • Agnieszka Piotrowska
  • Dariusz Wyrzykowski
  • Aleksandra Tesmar
  • Lech Chmurzyński
  • Dagmara JacewiczEmail author
Article

Abstract

The kinetics and thermodynamics have been studied for the reactions of the copper(II) complexes with iminodiacetate (ida), 2,2′-bipyridine (bipy) and 1,10-phenanthroline (phen) as ligands. The kinetics of substitution reactions of two aqua ligands for bipy and phen in the [Cu(ida)(H2O)2] coordination compound has been studied in water and three type of aqueous solutions of the following surfactants: anionic sodium dodecyl sulfate (SDS), cationic hexadecyl trimethyl-ammonium bromide (CTAB) and nonionic t-octylphenoxypolyetoxyethanol (Triton X-100). The progress of the substitution reactions in the studied solutions was monitored spectrophotometrically using the stopped-flow method. The studies have allowed the determination of the effect of the type of surfactant solutions on the rate of the substitution reaction. Moreover, the order of studied reactions has been determined. The research performed has also allowed us to propose the reaction mechanism of the [Cu(ida)(H2O)2] binary complex with chelate ligands (bipy or phen). In addition, the thermodynamic stability of complexes under study in aqueous solutions has been examined using the potentiometric titration method. Moreover, the potential scavenging activity of the copper(II) complexes has been investigated towards the superoxide radical.

Keywords

Copper(II) complexes Kinetics The effect of micelle Surfactants Radical scavengers 

Notes

Acknowledgements

This work was supported by National Science Centre, Poland under Grant Number 2015/19/N/ST5/00276.

Supplementary material

11144_2017_1269_MOESM1_ESM.png (58 kb)
Supplementary material 1 (PNG 58 kb)
11144_2017_1269_MOESM2_ESM.png (51 kb)
Supplementary material 2 (PNG 51 kb)
11144_2017_1269_MOESM3_ESM.png (54 kb)
Supplementary material 3 (PNG 53 kb)
11144_2017_1269_MOESM4_ESM.tif (64 kb)
Supplementary material 4 (TIFF 63 kb)
11144_2017_1269_MOESM5_ESM.tif (420 kb)
Supplementary material 5 (TIFF 419 kb)
11144_2017_1269_MOESM6_ESM.tif (389 kb)
Supplementary material 6 (TIFF 389 kb)
11144_2017_1269_MOESM7_ESM.txt (6 kb)
Supplementary material 7 (TXT 6 kb)

References

  1. 1.
    Roman-Alpiste MJ, Martin-Ramos JD, Castineiras-Campos A, Bugella-Altamirano E, Sicilia-Zafra AG, Gonzalez-Perez JM, Niclos-Gutierrez J (1999) Polyhedron 18:3341–3351CrossRefGoogle Scholar
  2. 2.
    Ren YP, Long LS, Mao BW, Yuan YZ, Huang RB, Zheng LS (2003) Angew Chem Int Ed 115:550–553CrossRefGoogle Scholar
  3. 3.
    Hong-Bin X, Li-Kai Y, Zhong-Min S, Shu-Mei Y, Heng-Już Z, Kui-Zhan S, Ya-Hui Z (2004) Transit Met Chem 29:471–476CrossRefGoogle Scholar
  4. 4.
    Selvakumar B, Rajendiran V, Maheswari PU, Stoeckli-Evans H, Palaniavar M (2006) J Inorg Biochem 100:316–330CrossRefGoogle Scholar
  5. 5.
    Pavlishchuk AV, Kolotilov SV, Zeller M, Thompson LK, Addison AW (2014) Inorg Chem 53:1320–1330CrossRefGoogle Scholar
  6. 6.
    Pranczk J, Jacewicz D, Wyrzykowski D, Tesmar A, Chmurzyński L (2015) J Chem Sci 127:1845–1852CrossRefGoogle Scholar
  7. 7.
    Holyer RH, Hubbard CD, Kettle SDA, Wilkins RG (1956) Inorg Chem 4:929–935CrossRefGoogle Scholar
  8. 8.
    Bunton CA (2006) Adv Colloid Interface Sci 123–136:333–343CrossRefGoogle Scholar
  9. 9.
    Dwars T, Paetzold E, Oehme G (2005) Angew Chem Int Ed 44:7174–7199CrossRefGoogle Scholar
  10. 10.
    Ruiz CC (1995) Colloid Polym Sci 273:1033–1040CrossRefGoogle Scholar
  11. 11.
    Singh A, Van Hamme JD, Ward OP (2007) Biotechnol Adv 25:99–121CrossRefGoogle Scholar
  12. 12.
    Samiey B, Toosi AR (2009) Bull Korean Chem Soc 30:2051–2056CrossRefGoogle Scholar
  13. 13.
    Hodges HL, De Araujo MA (1982) Inorg Chem 21:3236–3239CrossRefGoogle Scholar
  14. 14.
    Bellam R, Anipindi NR (2014) Transit Met Chem 39:311–326CrossRefGoogle Scholar
  15. 15.
    Wang JS, Matyjaszewski K (1995) Macromolecules 28:7901–7910CrossRefGoogle Scholar
  16. 16.
    Fridovich I (1995) Annu Rev Biochem 64:97–112CrossRefGoogle Scholar
  17. 17.
    Harrison PG, Ball IK, Azelee W, Daniell W, Goldfarb D (2000) Chem Mater 12:3715–3725CrossRefGoogle Scholar
  18. 18.
    Siddiqi ZA, Sharma PK, Shahid M, Khalid M, Siddique A, Kumar S (2012) Eur J Med Chem 57:102–111CrossRefGoogle Scholar
  19. 19.
    Siddiqi ZA, Sharma PK, Shahid M, Khalid M, Kumar S (2011) J Mol Struct 994:295–301CrossRefGoogle Scholar
  20. 20.
    Singh V, Tyagi R (2015) J Taibah Univ Sci 9:477–489CrossRefGoogle Scholar
  21. 21.
    Brariz I, Barriada J, Vilarino T, de Vicente MS (2004) Monatsh Chem 135:1475–1488CrossRefGoogle Scholar
  22. 22.
    Chmurzyński L (1996) Anal Chim Acta 326:267–274CrossRefGoogle Scholar
  23. 23.
    Chmurzyński L, Nesterowicz M, Wawrzyniak G, Kaczmarczyk E, Warnke Z (1996) Aust J Chem 49:931–942CrossRefGoogle Scholar
  24. 24.
    Gans P, Sabatini A, Vacca A (1996) Talanta 43:1739–1753CrossRefGoogle Scholar
  25. 25.
    Alderighi L, Gans P, Ienco A, Peters D, Sabatini A, Vacca A (1999) Coord Chem Rev 184:311–318CrossRefGoogle Scholar
  26. 26.
    Pranczk J, Jacewicz D, Wyrzykowski D, Chmurzynski L (2014) Curr Pharm Anal 10:293–304CrossRefGoogle Scholar
  27. 27.
    Audri RL, Allen AO, Bielski BH (1981) FEBS Lett 135:265–267CrossRefGoogle Scholar
  28. 28.
    Pranczk J, Jacewicz D, Wyrzykowski D, Wojtczak A, Tesmar A, Chmurzyński L (2015) Eur J Inorg Chem 20:3343–3349CrossRefGoogle Scholar
  29. 29.
    Wyrzykowski D, Inkielewicz-Stępniak I, Czupryniak J, Jacewicz D, Ossowski T, Woźniak M, Chmurzyński L (2013) Z Anorg Allg Chem 639:1795–1799CrossRefGoogle Scholar
  30. 30.
    Pranczk J, Wyrzykowski D, Jacewicz D, Sikorski A, Tesmar A, Chmurzyński L (2015) Polyhedron 100:74–81CrossRefGoogle Scholar
  31. 31.
    Rosi M, Sgamellotti A, Tarantelli F, Bertini I, Luchinat C (1986) Inorg Chem 25:1005–1008CrossRefGoogle Scholar
  32. 32.
    Wyrzykowski D, Pranczk J, Jacewicz D, Tesmar A, Pilarski B, Chmurzyński L (2014) Cent Eur J Chem 12:107–114Google Scholar
  33. 33.
    Sillen LG, Martel AE (1966) Stability constants of metal-ion complexes. The Chemical Society, LondonGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  • Joanna Drzeżdżon
    • 1
  • Agnieszka Piotrowska
    • 1
  • Dariusz Wyrzykowski
    • 1
  • Aleksandra Tesmar
    • 1
  • Lech Chmurzyński
    • 1
  • Dagmara Jacewicz
    • 1
    Email author
  1. 1.Faculty of ChemistryUniversity of GdańskGdańskPoland

Personalised recommendations