Advertisement

Reaction Kinetics, Mechanisms and Catalysis

, Volume 122, Issue 1, pp 409–432 | Cite as

Synthesis optimization of mesoporous ZSM-5 through desilication-reassembly in the methanol-to-propylene reaction

  • Mohsen Rahmani
  • Majid TaghizadehEmail author
Article

Abstract

Hierarchical H-ZSM-5 zeolites were synthesized using desilication and desilication-reassembly methods. The catalytic performance of the synthesized catalysts was studied in methanol-to-propylene in a fixed-bed reactor under atmospheric pressure, 480 °C and WHSV of 0.9 h−1. Response surface methodology based on the Box–Behnken design was employed to optimize the three important variables: NaOH/ZSM-5 molar ratio, CTAB/ZSM-5 molar ratio and time of reassembly for optimizing propylene selectivity. Physiochemical properties of the catalysts were studied by XRD, FE-SEM, BET, NH3-TPD, TGA and FT-IR tests. The significant increase in the external surface area, pore size distribution in the range of 2–6 nm and decrease in the Brønsted acidity for desilication-reassembly product were observed. The hierarchical pore system and modification of the acidity in addition to protecting the zeolite structure increased the useful lifetime of the catalyst, selectivity of propylene and P/E ratio.

Keywords

ZSM-5 Desilication-reassembly Methanol to propylene Box–Behnken design 

Notes

Acknowledgements

This work was financially supported by the Iranian Nanotechnology Initiative Council.

Supplementary material

11144_2017_1204_MOESM1_ESM.doc (614 kb)
Supplementary material 1 (DOC 613 kb)

References

  1. 1.
    Dolinskii SE (2011) Economically attractive technologies of deep conversion of associated petroleum gas. Russ J Gen Chem 81:2574–2593CrossRefGoogle Scholar
  2. 2.
    Xiang D, Yang S, Qian Y (2016) Techno-economic analysis and comparison of coal based olefins processes. Energy Convers Manage 110:33–41CrossRefGoogle Scholar
  3. 3.
    Pajaie HS, Taghizadeh M (2016) Methanol conversion to light olefins over surfactant-modified nanosized SAPO-34. Reac Kinet Mech Cat 118:701–717CrossRefGoogle Scholar
  4. 4.
    Zhang S, Gong Y, Zhang L, Liu Y, Dou T, Xu J, Deng F (2015) Hydrothermal treatment on ZSM-5 extrudates catalyst for methanol to propylene reaction: finely tuning the acidic property. Fuel Process Technol 129:130–138CrossRefGoogle Scholar
  5. 5.
    Zhuang Y-Q, Gao X, Zhu Y-P, Luo Z-H (2012) CFD modeling of methanol to olefins process in a fixed-bed reactor. Powder Technol 221:419–430CrossRefGoogle Scholar
  6. 6.
    Liu L, Huang W, Gao Z, Yin L (2010) The dehydration of methanol to dimethyl ether over a novel slurry catalyst. Energy Sources A 32:1379–1387CrossRefGoogle Scholar
  7. 7.
    Mei C, Wen P, Liu Z, Liu H, Wang Y, Yang W, Xie Z, Hua W, Gao Z (2008) Selective production of propylene from methanol: mesoporosity development in high silica HZSM-5. J Catal 258:243–249CrossRefGoogle Scholar
  8. 8.
    Liu J, Zhang C, Shen Z, Hua W, Tang Y, Shen W, Yue Y, Xu H (2009) Methanol to propylene: effect of phosphorus on a high silica HZSM-5 catalyst. Catal Commun 10:1506–1509CrossRefGoogle Scholar
  9. 9.
    Rostamizadeh M, Yaripour F (2016) Bifunctional and bimetallic Fe/ZSM-5 nanocatalysts for methanol to olefin reaction. Fuel 181:537–546CrossRefGoogle Scholar
  10. 10.
    Lee Y-J, Kim Y-W, Viswanadham N, Jun K-W, Bae JW (2010) Novel aluminophosphate (AlPO) bound ZSM-5 extrudates with improved catalytic properties for methanol to propylene (MTP) reaction. Appl Catal A 374:18–25CrossRefGoogle Scholar
  11. 11.
    Zokaie M, Wragg DS, Grønvold A, Fuglerud T, Cavka JH, Lillerud KP, Swang O (2013) Unit cell expansion upon coke formation in a SAPO-34 catalyst: a combined experimental and computational study. Microporous Mesoporous Mater 165:1–5CrossRefGoogle Scholar
  12. 12.
    Conte M, Xu B, Davies TE, Bartley JK, Carley AF, Taylor SH, Khalid K, Hutchings GJ (2012) Enhanced selectivity to propene in the methanol to hydrocarbons reaction by use of ZSM-5/11 intergrowth zeolite. Microporous Mesoporous Mater 164:207–213CrossRefGoogle Scholar
  13. 13.
    Müller S, Liu Y, Vishnuvarthan M, Sun X, van Veen AC, Haller GL, Sanchez-Sanchez M, Lercher JA (2015) Coke formation and deactivation pathways on H-ZSM-5 in the conversion of methanol to olefins. J Catal 325:48–59CrossRefGoogle Scholar
  14. 14.
    Losch P, Boltz M, Bernardon C, Louis B, Palčić A, Valtchev V (2016) Impact of external surface passivation of nano-ZSM-5 zeolites in the methanol-to-olefins reaction. Appl Catal A 509:30–37CrossRefGoogle Scholar
  15. 15.
    Qi R, Fu T, Wan W, Li Z (2017) Pore fabrication of nano-ZSM-5 zeolite by internal desilication and its influence on the methanol to hydrocarbon reaction. Fuel Process Technol 155:191–199CrossRefGoogle Scholar
  16. 16.
    Pan F, Lu X, Zhu Q, Zhang Z, Yan Y, Wang T, Chen S (2014) A fast route for synthesizing nano-sized ZSM-5 aggregates. J Mater Chem A 2:20667–20675CrossRefGoogle Scholar
  17. 17.
    Zhou M, Wang F, Xiao W, Gao L, Xiao G (2016) The comparison of mesoporous HZSM-5 zeolite catalysts prepared by different mesoporous templates and their catalytic performance in the methanol to aromatics reaction. Reac Kinet Mech Cat 119:699–713CrossRefGoogle Scholar
  18. 18.
    Sadowska K, Wach A, Olejniczak Z, Kuśtrowski P, Datka J (2013) Hierarchic zeolites: zeolite ZSM-5 desilicated with NaOH and NaOH/tetrabutylamine hydroxide. J Microporous Mesoporous Mater 167:82–88CrossRefGoogle Scholar
  19. 19.
    Bleken FL, Barbera K, Bonino F, Olsbye U, Lillerud KP, Bordiga S, Beato P, Janssens TVW, Svelle S (2013) Catalyst deactivation by coke formation in microporous and desilicated zeolite H-ZSM-5 during the conversion of methanol to hydrocarbons. J Catal 307:62–73CrossRefGoogle Scholar
  20. 20.
    Mentzel UV, Højholt KT, Holm MS, Fehrmann R, Beato P (2012) Conversion of methanol to hydrocarbons over conventional and mesoporous H-ZSM-5 and H-Ga-MFI: major differences in deactivation behavior. Appl Catal A 417–418:290–297CrossRefGoogle Scholar
  21. 21.
    Tao H, Yang H, Liu X, Ren J, Wang Y, Lu G (2013) Highly stable hierarchical ZSM-5 zeolite with intra-and inter-crystalline porous structures. Chem Eng J 225:686–694CrossRefGoogle Scholar
  22. 22.
    Hao K, Shen B, Wang Y, Ren J (2012) Influence of combined alkaline treatment and Fe–Ti-loading modification on ZSM-5 zeolite and its catalytic performance in light olefin production. J Ind Eng Chem 18:1736–1740CrossRefGoogle Scholar
  23. 23.
    Wang X, Wen M, Wang C, Ding J, Sun Y, Liu Y, Lu Y (2014) Microstructured fiber@HZSM-5 core–shell catalysts with dramatic selectivity and stability improvement for the methanol-to-propylene process. Chem Commun 50:6343–6345CrossRefGoogle Scholar
  24. 24.
    Wen M, Wang X, Han L, Ding J, Sun Y, Liu Y, Lu Y (2015) Monolithic metal-fiber@HZSM-5 core–shell catalysts for methanol-to-propylene. Microporous Mesoporous Mater 206:8–16CrossRefGoogle Scholar
  25. 25.
    Ding J, Zhang Z, Han L, Wang C, Chen P, Zhao G, Liu Y, Lu Y (2016) A self-supported SS-fiber@meso-HZSM-5 core–shell catalyst via caramel-assistant synthesis toward prolonged lifetime for the methanol-to-propylene reaction. RSC Adv 6:48387–48395CrossRefGoogle Scholar
  26. 26.
    Koo J-B, Jiang N, Saravanamurugan S, Bejblová M, Musilová Z, Čejka J, Park S-E (2010) Direct synthesis of carbon-templating mesoporous ZSM-5 using microwave heating. J Catal 276:327–334CrossRefGoogle Scholar
  27. 27.
    Schmidt I, Boisen A, Gustavsson E, Ståhl K, Pehrson S, Dahl S, Carlsson A, Jacobsen CJ (2001) Carbon nanotube templated growth of mesoporous zeolite single crystals. Chem Mater 13:4416–4418CrossRefGoogle Scholar
  28. 28.
    Pavlačková Z, Košová G, Žilková N, Zukal A, Čejka J (2006) Formation of mesopores in ZSM-5 by carbon templating. Stud Surf Sci Catal 162:905–912CrossRefGoogle Scholar
  29. 29.
    Choi M, Cho HS, Srivastava R, Venkatesan C, Choi DH, Ryoo R (2006) Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity. Nat Mater 5:718–723CrossRefGoogle Scholar
  30. 30.
    Cho K, Cho HS, De Menorval L-C, Ryoo R (2009) Generation of mesoporosity in LTA zeolites by organosilane surfactant for rapid molecular transport in catalytic application. Chem Mater 21:5664–5673CrossRefGoogle Scholar
  31. 31.
    Zhang Y, Zhu K, Duan X, Li P, Zhou X, Yuan W (2014) Synthesis of hierarchical ZSM-5 zeolite using CTAB interacting with carboxyl-ended organosilane as a mesotemplate. RSC Adv 4:14471–14474CrossRefGoogle Scholar
  32. 32.
    Narayanan S, Vijaya JJ, Sivasanker S, Kennedy LJ, Jesudoss SK (2015) Structural, morphological and catalytic investigations on hierarchical ZSM-5 zeolite hexagonal cubes by surfactant assisted hydrothermal method. Powder Technol 274:338–348CrossRefGoogle Scholar
  33. 33.
    Groen JC, Moulijn JA, Pérez-Ramírez J (2006) Desilication: on the controlled generation of mesoporosity in MFI zeolites. J Mater Chem 16:2121–2131CrossRefGoogle Scholar
  34. 34.
    Meunier FC, Verboekend D, Gilson J-P, Groen JC, Pérez-Ramírez J (2012) Influence of crystal size and probe molecule on diffusion in hierarchical ZSM-5 zeolites prepared by desilication. J Microporous Mesoporous Mater 148:115–121CrossRefGoogle Scholar
  35. 35.
    Groen JC, Zhu W, Brouwer S, Huynink SJ, Kapteijn F, Moulijn JA, Pérez-Ramírez J (2007) Direct demonstration of enhanced diffusion in mesoporous ZSM-5 zeolite obtained via controlled desilication. J Am Chem Soc 129:355–360CrossRefGoogle Scholar
  36. 36.
    Verboekend D, Pérez Ramírez J (2011) Desilication mechanism revisited: highly mesoporous all-silica zeolites enabled through pore-directing agents. Chem-Eur J 17:1137–1147CrossRefGoogle Scholar
  37. 37.
    Verboekend D, Pérez-Ramírez J (2011) Design of hierarchical zeolite catalysts by desilication. Catal Sci Technol 1:879–890CrossRefGoogle Scholar
  38. 38.
    Adem Z, Guenneau F, Springuel-Huet M-A, Gédéon A, Iapichella J, Cacciaguerra T, Galarneau A (2012) Diffusion properties of hexane in pseudomorphic MCM-41 mesoporous silicas explored by pulsed field gradient NMR. J Phys Chem C 116:13749–13756CrossRefGoogle Scholar
  39. 39.
    Galarneau A, Iapichella J, Bonhomme K, Di Renzo F, Kooyman P, Terasaki O, Fajula F (2006) Controlling the morphology of mesostructured silicas by pseudomorphic transformation: a route towards applications. Adv Funct Mater 16:1657–1667CrossRefGoogle Scholar
  40. 40.
    Tang Q, Xu H, Zheng Y, Wang J, Li H, Zhang J (2012) Catalytic dehydration of methanol to dimethyl ether over micro–mesoporous ZSM-5/MCM-41 composite molecular sieves. J Appl Catal A 413:36–42CrossRefGoogle Scholar
  41. 41.
    Khitev YP, Ivanova II, Kolyagin YG, Ponomareva OA (2012) Skeletal isomerization of 1-butene over micro/mesoporous materials based on FER zeolite. Appl Catal A 441:124–135CrossRefGoogle Scholar
  42. 42.
    Ordomsky VV, Ivanova II, Knyazeva EE, Yuschenko VV, Zaikovskii VI (2012) Cumene disproportionation over micro/mesoporous catalysts obtained by recrystallization of mordenite. J Catal 295:207–216CrossRefGoogle Scholar
  43. 43.
    Baş D, Boyacı İH (2007) Modeling and optimization I: usability of response surface methodology. J Food Eng 78:836–845CrossRefGoogle Scholar
  44. 44.
    Yaripour F, Shariatinia Z, Sahebdelfar S, Irandoukht A (2015) Conventional hydrothermal synthesis of nanostructured H-ZSM-5 catalysts using various templates for light olefins production from methanol. J Nat Gas Sci Eng 22:260–269CrossRefGoogle Scholar
  45. 45.
    Box GE, Behnken DW (1960) Some new three level designs for the study of quantitative variables. Technometrics 2:455–475CrossRefGoogle Scholar
  46. 46.
    Souza AS, dos Santos WNL, Ferreira SLC (2005) Application of Box–Behnken design in the optimisation of an on-line pre-concentration system using knotted reactor for cadmium determination by flame atomic absorption spectrometry. Spectrochimica Acta B 60:737–742CrossRefGoogle Scholar
  47. 47.
    Baerlocher C, McCusker LB, Olson DH (2007) Atlas of zeolite framework types. Elsevier, AmsterdamGoogle Scholar
  48. 48.
    ASTM Standard Test Method D5758-01 (2011)Google Scholar
  49. 49.
    Chandrasekar G, You K-S, Ahn J-W, Ahn W-S (2008) Synthesis of hexagonal and cubic mesoporous silica using power plant bottom ash. Microporous Mesoporous Mater 111:455–462CrossRefGoogle Scholar
  50. 50.
    Groen JC, Peffer LA, Moulijn JA, Pérez Ramírez J (2005) Mechanism of hierarchical porosity development in MFI zeolites by desilication: the role of aluminium as a pore-directing agent. Chem-Eur J 11:4983–4994CrossRefGoogle Scholar
  51. 51.
    Lee J, Sohn K, Hyeon T (2001) Fabrication of novel mesocellular carbon foams with uniform ultralarge mesopores. J Am Chem Soc 123:5146–5147CrossRefGoogle Scholar
  52. 52.
    Holland BT, Abrams L, Stein A (1999) Dual templating of macroporous silicates with zeolitic microporous frameworks. J Am Chem Soc 121:4308–4309CrossRefGoogle Scholar
  53. 53.
    Martin A, Berndt H (1994) Neutralization of HZSM-5 Brönsted acid sites by shaping with boehmite. React Kinet Catal Lett 52:405–411CrossRefGoogle Scholar
  54. 54.
    Yang Y, Sun C, Du J, Yue Y, Hua W, Zhang C, Shen W, Xu H (2012) The synthesis of endurable B–Al–ZSM-5 catalysts with tunable acidity for methanol to propylene reaction. Catal Commun 24:44–47CrossRefGoogle Scholar
  55. 55.
    Xu A, Ma H, Zhang H, Weiyong D, Fang D (2013) Effect of boron on ZSM-5 catalyst for methanol to propylene conversion. Pol J Chem Technol 15:95–101Google Scholar
  56. 56.
    Jabbari A, Abbasi A, Zargarnezhad H, Riazifar MA (2017) Study on the effect of SiO2/Al2O3 ratio on the structure and performance of nano-sized ZSM-5 in methanol to propylene conversion. Reac Kinet Mech Cat. doi: 10.1007/s11144-017-1162-6 Google Scholar
  57. 57.
    Chang CD, Chu CT-W, Socha RF (1984) Methanol conversion to olefins over ZSM-5: I. Effect of temperature and zeolite SiO2Al2O3. J Catal 86:289–296CrossRefGoogle Scholar
  58. 58.
    Koekkoek AJJ, Xin H, Yang Q, Li C, Hensen EJM (2011) Hierarchically structured Fe/ZSM-5 as catalysts for the oxidation of benzene to phenol. Microporous Mesoporous Mater 145:172–181CrossRefGoogle Scholar
  59. 59.
    Sazama P, Wichterlova B, Dedecek J, Tvaruzkova Z, Musilova Z, Palumbo L, Sklenak S, Gonsiorova O (2011) FTIR and 27Al MAS NMR analysis of the effect of framework Al- and Si-defects in micro- and micro-mesoporous H-ZSM-5 on conversion of methanol to hydrocarbons. Microporous Mesoporous Mater 143:87–96CrossRefGoogle Scholar
  60. 60.
    Hu S, Shan J, Zhang Q, Wang Y, Liu Y, Gong Y, Wu Z, Dou T (2012) Selective formation of propylene from methanol over high-silica nanosheets of MFI zeolite. Appl Catal A 445:215–220CrossRefGoogle Scholar
  61. 61.
    Svelle S, Joensen F, Nerlov J, Olsbye U, Lillerud K-P, Kolboe S, Bjørgen M (2006) Conversion of methanol into hydrocarbons over zeolite H-ZSM-5: ethene formation is mechanistically separated from the formation of higher alkenes. J Am Chem Soc 128:14770–14771CrossRefGoogle Scholar
  62. 62.
    Bjørgen M, Joensen F, Holm MS, Olsbye U, Lillerud K-P, Svelle S (2008) Methanol to gasoline over zeolite H-ZSM-5: improved catalyst performance by treatment with NaOH. Appl Catal A 345:43–50CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  1. 1.Chemical Engineering DepartmentBabol Noshirvani University of TechnologyBabolIran

Personalised recommendations