Advertisement

Reaction Kinetics, Mechanisms and Catalysis

, Volume 122, Issue 1, pp 655–670 | Cite as

Kinetic study of photocatalytic degradation of the emerging contaminant bisphenol A using N–TiO2 in visible light: a study of the significance of dissolved oxygen

  • D. López-Serna
  • S. I. Suárez-Vázquez
  • J. C. Durán-Álvarez
  • R. Zanella
  • V. H. Guerra-Cobián
  • A. Cruz-López
Article
  • 295 Downloads

Abstract

This study compares the tracking of bisphenol A (BPA) degradation by three analytical techniques: liquid chromatography mass spectrometry (HPLC–MS), ultraviolet/visible (UV–Vis) spectroscopy and dissolved oxygen (DO) content. In each evaluation method, the photochemical behavior of TiO2 and N–TiO2 under visible light confirmed the relationship between the adsorption and photodegradation processes, with the reaction analysis indicating the possibility of two photocatalytic mechanisms: conventional photocatalyzed radical oxidation and lattice oxygen driven oxidation. The first one concerns HPLC, where the average half-lives (t1/2) were 38 min (5% N–TiO2), 60 min (1% N–TiO2) and 64 min (TiO2), these values vary in 12% if compared with the values obtained by UV–Vis spectroscopy. The second mechanism showed a decrease in the initial concentration by more than 50% (8 mg L−1) after 3 h. The solution of doped photocatalysts is tracked best by DO measurement. The results presented here confirm that the efficiency of photocatalytic oxidation (EPO) of a reaction is highly related to the DO content, given that dissolved O2 proactively causes the release of radicals on the surface of excited materials under the action of visible light, thus increasing the BPA degradation rate. The quantum yield of BPA disappearance was below 0.1 for all the materials.

Keywords

Semiconductor Photocatalysis Endocrine disrupting Surface mechanism 

Notes

Acknowledgements

DLS wishes to thank CONACyT for the financial support (Master and mixed scholarship). Dr. Santiago I. Suárez are gratefully acknowledged for valuable support of PROMEP Nuevo PTC DSA/103.5/16/10510. R. Zanella acknowledges the financial support granted by PAPIIT 105416, UNAM, Mexico. Authors thank to PAICYT IT 404-15 and IT 510-15. The authors thank the Materials’ Laboratory of Facultad de Ingenieria Civil-UANL for allowing them to perform the described experiments.

Supplementary material

11144_2017_1200_MOESM1_ESM.docx (467 kb)
Supplementary material 1 (DOCX 466 kb)

References

  1. 1.
    Bhatnagar A, Sillanpäa M, Witek-Krowrak A (2015) Agricultural waste peels as versatile biomass for water purification—a review. Chem Eng J 270:244–271CrossRefGoogle Scholar
  2. 2.
    Lorber M, Schecter A, Paepke O, Shropshire W, Christensen K, Birnbaum L (2015) Exposure assessment of adult intake of bisphenol A (BPA) with emphasis on canned food dietary exposures. Environ Inter 77:55–62CrossRefGoogle Scholar
  3. 3.
    Carlson JC, Stefan MI, Parnis JM, Ch D (2015) Direct UV photolysis of selected pharmaceuticals, personal care products and endocrine disruptors in aqueous solution. Water Res 84:350–361CrossRefGoogle Scholar
  4. 4.
    Chao-Yin K, Chung-Hsin W, Jui-Tai W, Yu-Ren C (2015) Synthesis and Characterization of a phosphorus-doped TiO2 immobilized bed for the photodegradation of bisphenol A under UV and sunlight irradiation. Reac Kinet Mech Cat 114:453–766Google Scholar
  5. 5.
    Kralchevska R, Milanova M, Bistan M, Pintar A, Todorovsky D (2013) Photocatalytic degradation of some endocrine disruptin compounds by modified TiO2 under UV or halogen lamp illumination. Reac Kinet Mech Cat 109:355–373CrossRefGoogle Scholar
  6. 6.
    Turchi CS, Ollis DF (1990) Photocatalytic degradation of organic water contaminants: mechanisms involving hydroxyl radical attack. J Catal 122(1):178–192CrossRefGoogle Scholar
  7. 7.
    Manzo-Robledo A, Cruz López A, Flores Caballero AA, Zaldivar Cadena AA, López M, Vázquez Cuchillo O (2015) Photoelectrochemical properties of sol–gel synthesized titanium dioxide nano-particles using different acids: X-ray photoelectron spectroscopy reveals the induced effect of hydrolysis precursor. Mater Sci Semi Proc 31:94–99CrossRefGoogle Scholar
  8. 8.
    Hirakawa T, Koga C, Negishi N, Takeuchi K, Matsuzawa S (2009) An approach to elucidating photocatalytic reaction mechanisms by monitoring dissolved oxygen: effect of H2O2 on photocatalysis. Appl Catal B 87:46–55Google Scholar
  9. 9.
    García-Fernández I, Fernández-Calderero I, Polo-López MI, Fernández-Ibañez P (2015) Disinfection of urban effluents using solar TiO2 photocatalysis: a study of significance of dissolved oxygen, temperature, type of microorganism and water matrix. Catal Today 240:30–38CrossRefGoogle Scholar
  10. 10.
    Del Ángel-Sánchez K, Vázquez-Cuchillo O, Salazar-Villanueva M, Sánchez Ramírez JF, Cruz-López A, Aguilar-Elguezabal A (2011) Preparation, characterization and photocatalytic properties of TiO2nanostructured spheres synthesized by the Sol-Gel method modified with ethylene glicol. J Sol–Gel Sci Technol 38:360–365CrossRefGoogle Scholar
  11. 11.
    Yunjin Y, Jiacheng Q, Chen H, Fengyu W, Xueting L, Jianlong W, Shaobin W (2015) one-pot approach for synthesis of N-doped TiO2/ZnFe2O4 hydbrid as an efficient photocatalyst for degradation of aqueous organic pollutants. J Hazard Mater 291:28–37CrossRefGoogle Scholar
  12. 12.
    Pablo-Romero MP, De Jesús J (2016) Economic growth and energy consumption: the Energy-Environmental Kuznets Curve for Latin America and the Caribbean. Renew Sustain Energy 60:1343–1350CrossRefGoogle Scholar
  13. 13.
    Zhang YZ, Song XF, Kondoh A, Xia J, Tang ChY (2011) Behavior, mass inventories and modeling evaluation of xenobiotic endocrine-disrupting chemicals along an urban receiving wastewater river in Henan Province, China. Water Res 45:292–302CrossRefGoogle Scholar
  14. 14.
    Kitsinelis S, Zissis G, Fokitis E (2009) A strategy towards the next generation of low pressure discharge lamps: lighting after mercury. J Phys D 42:1–8CrossRefGoogle Scholar
  15. 15.
    Klauson D, Gromyko I, Dedova T, Pronina N, Krichevskaya M, Budarnaja O, Oja Acik I, Volobujeva O, Sildos I, Utt K (2015) Study on photocatalytic activity of ZnO nanoneedles, nanorods, pyramids and hierarchical structures obtained by spray pyrolysis method. Mater Sci Semi Proc 31:315–324CrossRefGoogle Scholar
  16. 16.
    Del Ángel-Sanchez K, Vázquez-Cuchillo O, Aguilar-Elguezabal A, Cruz-López A, Herrera-Gómez A (2013) Photocatalytic degradation of 2,4-dichlorophenoxyacetic acid under visible light: effect of synthesis route. Mater Chem Phys 139:423–430CrossRefGoogle Scholar
  17. 17.
    Ericksson J, Rahm S, Green N, Bergman Ǻ, Jakobsson E (2004) Photochemical transformation of tetrabromobispehnol A and related phenols in water. Chemosphere 54(2004):117–126CrossRefGoogle Scholar
  18. 18.
    Xie Y, Zhao X, Li Y, Zhao Q, Zhou X, Yuan Q (2008) CTAB-assisted synthesis of mesoporous F-N-codoped TiO2 powders with high visible-light-driven catalytic activity and adsorption capacity. J Solid State Chem 181:1936–1942CrossRefGoogle Scholar
  19. 19.
    Dong F, Zhao W, Wu Z, Guo S (2009) Band structure and visible ligbt photocatalytic activity of multi.type nitrogen doped TiO2 nanoparticles prepared by termal descomposition. J Hazard Mater 162:763–770CrossRefGoogle Scholar
  20. 20.
    Di Valentin C, Finazzi E, Pacchioni G, Selloni A, Livraghi S, Paganini MC, Giamello E (2007) N-doped TiO2: theory and experiment. Chem Phys 339:44–56CrossRefGoogle Scholar
  21. 21.
    Lee S, Cho I-S, Lee DK, Kim DW, Noh TH, Kwak CH, Park S, Hong KS, Lee J-K, Jung HS (2010) Influence of nitrogen chemical states on photocatalytic activities of nitrogen-doped TiO2 nanoparticles under visible light. J Photochem Photobiol A 213:129–135CrossRefGoogle Scholar
  22. 22.
    Chen X, Burda C (2004) Photoelectrons investigation of Nitrogen-doped titania nanoparticles. J Phys Chem B 108:15446–15449CrossRefGoogle Scholar
  23. 23.
    Ashi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxide. Science 239:269–271CrossRefGoogle Scholar
  24. 24.
    Barolo G, Livraghi S, Chiesa M, Paganini MC, Giamello E (2012) Mechanism of the photoactivity under visible light of N-doped titanium dioxide. Charge carriers migration in irradiated N-TiO2 investigated by electron paramagnetic resonance. J Phys Chem C 116(39):20887–20894CrossRefGoogle Scholar
  25. 25.
    Hoang S, Berglund SP, Hahn NT, Bard AJ, Mullins CB (2012) Enhancing visible light photo-oxidation of water with TiO2 nanowire arrays via co-treatment with H2 and NH3: synergistic effects between Ti3+ and N. J Am Chem Soc 134(8):3659–3662CrossRefGoogle Scholar
  26. 26.
    Frontistis Z, Daskalaki VM, Katsaounis A, Poulios I, Mantzavinos D (2011) Electrochemical enhancement of solar photocatalysis: degradation of endocrine disruptor bisphenol-A on Ti/TiO2 films. Water Res 45:2996–3004CrossRefGoogle Scholar
  27. 27.
    Hou CH, Huang S-H, Chou PH, Den W (2015) Removal of bisphenol A from aqueous solutions by electrochemical polymerization on a carbon aerogel electrode. J Taiwan Inst Chem Eng 51:103–108CrossRefGoogle Scholar
  28. 28.
    Tsai W-T, Lee M-K, Su T-S, Chang YM (2009) Photodegradation of bisphenol-A in a batch TiO2 suspension reactor. J Hazard Mater 168:269–275CrossRefGoogle Scholar
  29. 29.
    Levenspiel O (2015) Ingeniería de las reacciones químicas. Limusa, MexicoGoogle Scholar
  30. 30.
    Lente G (2016) Editorial. React Kinet Mech Cat 119(1):3–4CrossRefGoogle Scholar
  31. 31.
    Lente G (2015) Deterministic kinetics in chemistry and systems biology. The dinamics of complex reaction networks. Spinger, BerlinGoogle Scholar
  32. 32.
    Yanxiang L, Xujie L, Feng W, Nansheng D (2011) Adsorption and photooxidation of pharmaceuticals and personal care products on clay minerals. Reac Kinet Mech Cat 104:61–73CrossRefGoogle Scholar
  33. 33.
    Ali AM, Emanuelsson EAC, Petterson DA (2011) Conventional versus lattice photocatalysed reactions: implications of the lattice oxygen participation in the liquid phase photocatalytic oxydation with nanostructired ZnO thin film on reaction products and mechanism at both 254 and 340 nm. Appl Catal B 106:323–336CrossRefGoogle Scholar
  34. 34.
    Miyauchi M, Ikezawa A, Tobimatsu H, Irie H, Hashimoto K (2004) Zeta potential and photocatalytic activity of nitrogen doped TiO2 thin films. Phys Chem Chem Phys 6:865–870Google Scholar
  35. 35.
    Subagio DP, Srinivasan M, Lim M, Lim TT (2010) Photocatalytic degradation of bisphenol-A by nitrogen-doped TiO2 hollow sphere in a vis-LED photoreactor. Appl Catal B 95:414–422CrossRefGoogle Scholar
  36. 36.
    Zhang X, Ding Y, Tang H, Han X, Zhu L, Wang N (2014) Degradation of bisphenol A by hydrogen peroxide activated with CuFeO2 microparticles as a heterogeneous Fenton-like catalyst: efficiency, stability and mechanism. Chem Eng J 246:251–262CrossRefGoogle Scholar
  37. 37.
    Kondrakov AO, Ignatev AN, Lunin VV, Frimmel FH, Bräse S, Horn H (2016) Roles of water and dissolved oxygen in photocatalytic generation of free OH radicals in aqueous TiO2suspensions: an isotope labeling study. Appl Catal B 182:424–430CrossRefGoogle Scholar
  38. 38.
    Almeida AR, Moulijn JA, Mul G (2011) Photocatalytic oxydation of cyclohexane over TiO2: evidence for a Mars-van Krevelen mechanism. J Phys Chem C 115:1330–1338CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  • D. López-Serna
    • 1
  • S. I. Suárez-Vázquez
    • 1
  • J. C. Durán-Álvarez
    • 2
  • R. Zanella
    • 2
  • V. H. Guerra-Cobián
    • 1
  • A. Cruz-López
    • 1
  1. 1.Universidad Autónoma de Nuevo LeónFacultad de Ingeniería CivilSan Nicolás de los GarzaMéxico
  2. 2.Centro de Ciencias Aplicadas y Desarrollo TecnológicoUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico

Personalised recommendations