Reaction Kinetics, Mechanisms and Catalysis

, Volume 121, Issue 2, pp 763–772 | Cite as

A study on the effect of SiO2/Al2O3 ratio on the structure and performance of nano-sized ZSM-5 in methanol to propylene conversion

  • Afshin JabbariEmail author
  • Alireza Abbasi
  • Hossein Zargarnezhad
  • Mitra Riazifar


The effect of SiO2/Al2O3 ratio on high silica content nano-sized HZSM-5 stability and selectivity in conversion of methanol to propylene (MTP) has been investigated in a continuous flow isotherm fixed-bed reactor. Highly crystalline HZSM-5 zeolite samples with SiO2/Al2O3 ratios ranging 150–200 have been prepared and characterized using XRD, ICP-AES analytical techniques, NH3-TPD, BET surface area and SEM imaging for studying their physical and chemical behavior. The reaction was conducted at 480 °C and 1bar with WHSV = 1 h−1 and a solution with 1:1 wt% of methanol and water as feed. Over thoroughly monitoring the catalyst synthesis conditions, the nanocrystal ZSM-5 zeolite samples were fabricated with fairly close microstructural properties and crystal sizes in order to be able to study the effect of SiO2/Al2O3 ratio on the ZSM-5’s performance in MTP. Results show that although the crystal size does not considerably affect the elementary structure of the zeolite active sites, it seems to be an influential factor in bond strength of Si–O versus Al–O. The results have also showed that increase of SiO2/Al2O3 ratio leads to higher selectivity and stability of catalyst.


Nano ZSM-5 MTP Zeolite Analytical techniques 


  1. 1.
    Chang CD, Chu CTW, Socha RF (1984) J Catal 86:289–296CrossRefGoogle Scholar
  2. 2.
    Chang CD, Lang WH, Smith RL (1979) J Catal 56:169–173CrossRefGoogle Scholar
  3. 3.
    Chang CD, Silvestri AJ (1977) J Catal 259:249–259CrossRefGoogle Scholar
  4. 4.
    Wu MM, Kaeding WW (1984) J Catal 88:478–489CrossRefGoogle Scholar
  5. 5.
    Dehertog WJH, Froment GF (1991) Appl Catal 71:153–165CrossRefGoogle Scholar
  6. 6.
    Dahl IM, Kolboe S (1993) Catal Lett 20:329–336CrossRefGoogle Scholar
  7. 7.
    Song Z, Liu W, Chen C et al (2013) Reac Kinet Mech Cat 109:221–231CrossRefGoogle Scholar
  8. 8.
    Stöcker M (1999) Microporous Mesoporous Mater 29:3–48CrossRefGoogle Scholar
  9. 9.
    Chen JQ, Bozzano A, Glover B et al (2005) Catal Today 106:103–107CrossRefGoogle Scholar
  10. 10.
    Hack M, Koss U, Rothaemel M, Holtmann HD (2006) US007015369B2Google Scholar
  11. 11.
    Dahl IM, Kolboe S (1994) J Catal 149:458–464CrossRefGoogle Scholar
  12. 12.
    Mobinikhaledi A, Khajeh-Amiri A (2014) Reac Kinet Mech Cat 112:131–145CrossRefGoogle Scholar
  13. 13.
    Mobinikhaledi A, Foroughifar N, Khajeh-Amiri A (2016) Reac Kinet Mech Cat 117:59–75CrossRefGoogle Scholar
  14. 14.
    Sugimoto M, Katsuno H, Takatsu K, Kawata N (1987) Zeolites 7:503–507CrossRefGoogle Scholar
  15. 15.
    Frey K, Lubango LM, Scurrell MS, Guczi L (2011) Reac Kinet Mech Cat 104:303–309CrossRefGoogle Scholar
  16. 16.
    van Donk S, Janssen AH, Bitter JH, de Jong KP (2003) Catal Rev 45:297–319CrossRefGoogle Scholar
  17. 17.
    Rezaei F, Webley P (2010) Sep Purif Technol 70:243–256CrossRefGoogle Scholar
  18. 18.
    Egeblad K, Christensen CH, Kustova M, Christensen CH (2008) Chem Mater 20:946–960CrossRefGoogle Scholar
  19. 19.
    Groen JC, Peffer LAA, Moulijn JA, Pérez-Ramírez J (2004) Coll Surf A 241:53–58CrossRefGoogle Scholar
  20. 20.
    Tao Y, Kanoh H, Kaneko K (2003) J Am Chem Soc 125:6044–6045CrossRefGoogle Scholar
  21. 21.
    Yamamura Masami, Chaki Kazutoshi, Toshiya Wakatsuki HO (1994) HO 14:643–649Google Scholar
  22. 22.
    Chester EGD AW (2009) Zeolite Characterization and Catalysis. Springer, BerlinCrossRefGoogle Scholar
  23. 23.
    Olson DH, Kokotailo GT, Lawton SL, Meier WM (1981) J Phys Chem 85:2238–2243CrossRefGoogle Scholar
  24. 24.
    Wang X, Lau KC, Turner CH, Dunlap BI (2010) J Power Sources 195:4177–4184CrossRefGoogle Scholar
  25. 25.
    Wan Z, Wu W, Li (Kevin) G et al (2016) Appl Catal A Gen 523:312–320CrossRefGoogle Scholar
  26. 26.
    Van Grieken R, Sotelo JL, Menéndez JM, Melero JA (2000) Microporous Mesoporous Mater 39:135–147CrossRefGoogle Scholar
  27. 27.
    Zhou M, Wang F, Xiao W et al (2016) Reac Kinet Mech Cat 119:699–713CrossRefGoogle Scholar
  28. 28.
    Hu Y, Liu C, Zhang Y et al (2009) Microporous Mesoporous Mater 119:306–314CrossRefGoogle Scholar
  29. 29.
    Campelo JM, Garcia A, Herencia JF, Luma D, Marinas JM, Romero AA (1995) J Catal 151:307–314CrossRefGoogle Scholar
  30. 30.
    Arena F, Dario R, Parmaliana A (1998) Appl Catal A Gen 170:127–137CrossRefGoogle Scholar
  31. 31.
    Costa C, Dzikh IP, Lopes JM et al (2000) J Mol Catal A: Chem 154:193–201CrossRefGoogle Scholar
  32. 32.
    Shirazi L, Jamshidi E, Ghasemi MR (2008) Cryst Res Technol 43:1300–1306CrossRefGoogle Scholar
  33. 33.
    Chen D, Moljord K, Fuglerud T, Holmen A (1999) Microporous Mesoporous Mater 29:191–203CrossRefGoogle Scholar
  34. 34.
    Zhang W, Burckle EC, Smirniotis PG (1999) Microporous Mesoporous Mater 33:173–185CrossRefGoogle Scholar
  35. 35.
    Reddy CR, Bhat YS, Nagendrappa G, Jai Prakash BS (2009) Catal Today 141:157–160CrossRefGoogle Scholar
  36. 36.
    Firoozi M, Baghalha M, Asadi M (2009) Catal Commun 10:1582–1585CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  • Afshin Jabbari
    • 1
    Email author
  • Alireza Abbasi
    • 1
  • Hossein Zargarnezhad
    • 2
  • Mitra Riazifar
    • 3
  1. 1.School of Chemistry, University College of ScienceUniversity of TehranTehranIran
  2. 2.Department of Materials Science and EngineeringSharif University of TechnologyTehranIran
  3. 3.Chemistry DepartmentSharif University of TechnologyTehranIran

Personalised recommendations