Reaction Kinetics, Mechanisms and Catalysis

, Volume 121, Issue 1, pp 255–274 | Cite as

Analysis of Ni species formed on zeolites, mesoporous silica and alumina supports and their catalytic behavior in the dry reforming of methane

  • Helena Drobná
  • Martin Kout
  • Agnieszka Sołtysek
  • Victor M. González-Delacruz
  • Alfonso Caballero
  • Libor Čapek


The presented investigation is focused on the analysis of Ni species formed on microporous (zeolites MFI and FAU) and mesoporous materials (Al-MCM-41 and SBA-15) and alumina supports and their catalytic behavior in the dry reforming of methane. The paper lays emphasis on the relationship between the catalytic behavior of Ni-based catalysts and their textural/structural properties. Ni-based catalysts were prepared by wet impregnation (11 wt% of Ni) followed by calcination in air and reduction in hydrogen. The properties of Ni-based catalysts were also compared prior and after the catalytic tests. The critical role was played by the high value of the specific surface area and the high strength of the interaction between the Ni species and the support, which both determined the high dispersion and stability of metal Ni0 particles. Ni–Al–MCM-41 and Ni–SBA-15 showed the values of the conversion of CO2 and CH4 above 90% (stable during 12 h). Slightly lower values of the conversion of CO2 and CH4 were observed over Ni–Al2O3 (also stable during 12 h). In contrast to these materials, Ni–MFI and Ni–FAU exhibited the worse metallic Ni0 particles dispersion and very bad catalytic behavior.


Dry reforming Methane Nickel Catalysis Particle size 



The authors gratefully thank to the European Social Fund in the Czech Republic for financial support of the project ‘Router’ Development of Research Teams at the University of Pardubice (Project No. CZ.1.07/2.3.00/30.0058). We also thank the Ministry of Science and Education of Spain for financial support (Projects ENE2011-24412 and CTQ2014-60524-R).


  1. 1.
    Bartholomew CH (1991) Recent technological developments in Fischer-Tropsch catalysis. Catal Lett 7(1–4):303–315. doi: 10.1007/Bf00764511 CrossRefGoogle Scholar
  2. 2.
    Kirschbaum MUF (2014) Climate-change impact potentials as an alternative to global warming potentials. Environ Res Lett. doi: 10.1088/1748-9326/9/3/034014 Google Scholar
  3. 3.
    Bradford MCJ, Vannice MA (1999) CO2 reforming of CH4. Catal Rev 41(1):1–42. doi: 10.1081/Cr-100101948 CrossRefGoogle Scholar
  4. 4.
    Mark MF, Mark F, Maier WF (1997) Reaction kinetics of the CO2 reforming of methane. Chem Eng Technol 20(6):361–370. doi: 10.1002/ceat.270200602 CrossRefGoogle Scholar
  5. 5.
    Reddy GK, Loridant S, Takahashi A, Delichere P, Reddy BM (2010) Reforming of methane with carbon dioxide over Pt/ZrO2/SiO2 catalysts-effect of zirconia to silica ratio. Appl Catal A 389(1–2):92–100. doi: 10.1016/j.apcata.2010.09.007 CrossRefGoogle Scholar
  6. 6.
    Mette K, Kuhl S, Tarasov A, Dudder H, Kahler K, Muhler M, Schlogl R, Behrens M (2015) Redox dynamics of Ni catalysts in CO2 reforming of methane. Catal Today 242:101–110. doi: 10.1016/j.cattod.2014.06.011 CrossRefGoogle Scholar
  7. 7.
    Usman M, Daud WMAW, Abbas HF (2015) Dry reforming of methane: Influence of process parameters-a review. Renew Sustain Energy Rev 45:710–744. doi: 10.1016/j.rser.2015.02.026 CrossRefGoogle Scholar
  8. 8.
    Zhang J, Zhang XF, Tu M, Liu WF, Liu HO, Qiu JS, Zhou L, Shao ZG, Ho HL, Yeung KL (2012) Preparation of core (Ni base)-shell (Silicalite-1) catalysts and their application for alkali resistance in direct internal reforming molten carbonate fuel cell. J Power Sources 198:14–22. doi: 10.1016/j.jpowsour.2011.09.070 CrossRefGoogle Scholar
  9. 9.
    Gonzalez-DelaCruz VM, Holgado JP, Pereniguez R, Caballero A (2008) Morphology changes induced by strong metal-support interaction on a Ni-ceria catalytic system. J Catal 257(2):307–314. doi: 10.1016/j.jcat.2008.05.009 CrossRefGoogle Scholar
  10. 10.
    Yu MJ, Zhu YA, Lu Y, Tong GS, Zhu KK, Zhou XG (2015) The promoting role of Ag in Ni-CeO2 catalyzed CH4-CO2 dry reforming reaction. Appl Catal B 165:43–56. doi: 10.1016/j.apcatb.2014.09.066 CrossRefGoogle Scholar
  11. 11.
    Guo JJ, Lou H, Zhao H, Chai DF, Zheng XM (2004) Dry reforming of methane over nickel catalysts supported on magnesium aluminate spinels. Appl Catal A 273(1–2):75–82. doi: 10.1016/j.apcata.2004.06.014 CrossRefGoogle Scholar
  12. 12.
    Caballero A, Holgado JP, Gonzalez-delaCruz VM, Habas SE, Herranz T, Salmeron M (2010) In situ spectroscopic detection of SMSI effect in a Ni/CeO2 system: hydrogen-induced burial and dig out of metallic nickel. Chem Commun 46(7):1097–1099. doi: 10.1039/b920803h CrossRefGoogle Scholar
  13. 13.
    Park MH, Choi BK, Park YH, Moon DJ, Park NC, Kim YC (2015) Kinetics for Steam and CO2 Reforming of Methane Over Ni/La/Al2O3 Catalyst. J Nanosci Nanotechnol 15(7):5255–5258. doi: 10.1166/jnn.2015.10403 CrossRefGoogle Scholar
  14. 14.
    Smoláková L, Kout M, Čapek L, Rodriguez-Gomez A, Gonzalez-delaCruz VM, Hromádko L, Caballero A (2016) Nickel catalyst with outstanding activity in the DRM reaction prepared by high temperature calcination treatment. Int J Hydrog Energy 41(20):8459–8469. doi: 10.1016/j.ijhydene.2016.03.161 CrossRefGoogle Scholar
  15. 15.
    Juan-Juan J, Roman-Martinez MC, Illan-Gomez MJ (2009) Nickel catalyst activation in the carbon dioxide reforming of methane effect of pretreatments. Appl Catal A 355(1–2):27–32. doi: 10.1016/j.apcata.2008.10.058 CrossRefGoogle Scholar
  16. 16.
    Zeng Y, Ma HF, Zhang HT, Ying WY, Fang DY (2014) Highly efficient NiAl2O4-free Ni/gamma-Al2O3 catalysts prepared by solution combustion method for CO methanation. Fuel 137:155–163. doi: 10.1016/j.fuel.2014.08.003 CrossRefGoogle Scholar
  17. 17.
    Burattin P, Che M, Louis C (1997) Characterization of the Ni(II) phase formed on silica upon deposition-precipitation. J Phys Chem B 101(36):7060–7074. doi: 10.1021/Jp970194d CrossRefGoogle Scholar
  18. 18.
    Zhou L, Li LD, Wei NN, Li J, Basset JM (2015) Effect of NiAl2O4 formation on Ni/Al2O3 stability during dry reforming of methane. ChemCatChem 7(16):2508–2516. doi: 10.1002/cctc.201500379 CrossRefGoogle Scholar
  19. 19.
    Wu T, Zhang Q, Cai WY, Zhang P, Song XF, Sun Z, Gao L (2015) Phyllosilicate evolved hierarchical Ni- and Cu-Ni/SiO2 nanocomposites for methane dry reforming catalysis. Appl Catal A 503:94–102. doi: 10.1016/j.apcata.2015.07.012 CrossRefGoogle Scholar
  20. 20.
    Izquierdo U, Barrio VL, Bizkarra K, Gutierrez AM, Arraibi JR, Gartzia L, Banuelos J, Lopez-Arbeloa I, Cambra JF (2014) Ni and Rh-Ni catalysts supported on Zeolites L for hydrogen and syngas production by biogas reforming processes. Chem Eng J 238:178–188. doi: 10.1016/j.cej.2013.08.093 CrossRefGoogle Scholar
  21. 21.
    Halliche D, Cherifi O, Taarit YB, Auroux A (2008) Catalytic reforming of methane by carbon dioxide over nickel-exchanged zeolite catalysts. Kinet Catal 49(5):667–675. doi: 10.1134/S002315840805011x CrossRefGoogle Scholar
  22. 22.
    Vafaeian Y, Haghighi M, Aghamohammadi S (2013) Ultrasound assisted dispersion of different amount of Ni over ZSM-5 used as nanostructured catalyst for hydrogen production via CO2 reforming of methane. Energy Convers Manag 76:1093–1103. doi: 10.1016/j.enconman.2013.08.010 CrossRefGoogle Scholar
  23. 23.
    Frontera P, Macario A, Aloise A, Antonucci PL, Giordano G, Nagy JB (2013) Effect of support surface on methane dry-reforming catalyst preparation. Catal Today 218:18–29. doi: 10.1016/j.cattod.2013.04.029 CrossRefGoogle Scholar
  24. 24.
    Fakeeha AH, Khan WU, Al-Fatesh AS, Abasaeed AE (2013) Stabilities of zeolite-supported Ni catalysts for dry reforming of methane. Chin J Catal 34(4):764–768. doi: 10.1016/S1872-2067(12)60554-3 CrossRefGoogle Scholar
  25. 25.
    Iwamoto M, Hasuwa T, Furukawa H, Kagawa S (1983) Water gas shift reaction catalyzed by metal ion-exchanged zeolites. J Catal 79(2):291–297. doi: 10.1016/0021-9517(83)90324-X CrossRefGoogle Scholar
  26. 26.
    Pinheiro AN, Valentini A, Sasaki JM, Oliveira AC (2009) Highly stable dealuminated zeolite support for the production of hydrogen by dry reforming of methane. Appl Catal A 355(1–2):156–168. doi: 10.1016/j.apcata.2008.12.007 CrossRefGoogle Scholar
  27. 27.
    Ginsburg JM, Pina J, El Solh T, de Lasa HI (2005) Coke formation over a nickel catalyst under methane dry reforming conditions: thermodynamic and kinetic models. Ind Eng Chem Res 44(14):4846–4854. doi: 10.1021/Ie0496333 CrossRefGoogle Scholar
  28. 28.
    Chang JS, Park SE, Chon HZ (1996) Catalytic activity and coke resistance in the carbon dioxide reforming of methane to synthesis gas over zeolite-supported Ni catalysts. Appl Catal A 145(1–2):111–124. doi: 10.1016/0926-860x(96)00150-0 CrossRefGoogle Scholar
  29. 29.
    Chen XJ, Jiang JG, Tian SC, Li KM (2015) Biogas dry reforming for syngas production: catalytic performance of nickel supported on waste-derived SiO2. Catal Sci Technol 5(2):860–868. doi: 10.1039/C4cy01126k CrossRefGoogle Scholar
  30. 30.
    Wang N, Yu XP, Wang Y, Chu W, Liu M (2013) A comparison study on methane dry reforming with carbon dioxide over LaNiO3 perovskite catalysts supported on mesoporous SBA-15, MCM-41 and silica carrier. Catal Today 212:98–107. doi: 10.1016/j.cattod.2012.07.022 CrossRefGoogle Scholar
  31. 31.
    Liu DP, Lau R, Borgna A, Yang YH (2009) Carbon dioxide reforming of methane to synthesis gas over Ni-MCM-41 catalysts. Appl Catal A 358(2):110–118. doi: 10.1016/j.apcata.2008.12.044 CrossRefGoogle Scholar
  32. 32.
    Liu DP, Quek XY, Cheo WNE, Lau R, Borgna A, Yang YH (2009) MCM-41 supported nickel-based bimetallic catalysts with superior stability during carbon dioxide reforming of methane: effect of strong metal-support interaction. J Catal 266(2):380–390. doi: 10.1016/j.jcat.2009.07.004 CrossRefGoogle Scholar
  33. 33.
    Liu DP, Quek XY, Wah HHA, Zeng GM, Li YD, Yang YH (2009) Carbon dioxide reforming of methane over nickel-grafted SBA-15 and MCM-41 catalysts. Catal Today 148(3–4):243–250. doi: 10.1016/j.cattod.2009.08.014 CrossRefGoogle Scholar
  34. 34.
    Gadalla AM, Bower B (1988) The role of catalyst support on the activity of nickel for reforming methane with CO2. Chem Eng Sci 43(11):3049–3062. doi: 10.1016/0009-2509(88)80058-7 CrossRefGoogle Scholar
  35. 35.
    Luengnaruemitchai A, Kaengsilalai A (2008) Activity of different zeolite-supported Ni catalysts for methane reforming with carbon dioxide. Chem Eng J 144(1):96–102. doi: 10.1016/j.cej.2008.05.023 CrossRefGoogle Scholar
  36. 36.
    Zhang H, Li M, Xiao PF, Liu DL, Zou CJ (2013) Structure and catalytic performance of Mg-SBA-15-supported nickel catalysts for CO2 reforming of methane to syngas. Chem Eng Technol 36(10):1701–1707. doi: 10.1002/ceat.201300006 Google Scholar
  37. 37.
    Kaydouh MN, El Hassan N, Davidson A, Casale S, El Zakhem H, Massiani P (2015) Effect of the order of Ni and Ce addition in SBA-15 on the activity in dry reforming of methane. C R Chim 18(3):293–301. doi: 10.1016/j.crci.2015.01.004 CrossRefGoogle Scholar
  38. 38.
    Saha B, Khan A, Ibrahim H, Idem R (2014) Evaluating the performance of non-precious metal based catalysts for sulfur-tolerance during the dry reforming of biogas. Fuel 120:202–217. doi: 10.1016/j.fuel.2013.12.016 CrossRefGoogle Scholar
  39. 39.
    Lin TJ, Meng X, Shi L (2014) Ni-exchanged Y-zeolite. An efficient heterogeneous catalyst for acetylene hydrocarboxylation. Appl Catal A 485:163–171. doi: 10.1016/j.apcata.2014.07.036 CrossRefGoogle Scholar
  40. 40.
    Maia AJ, Louis B, Lam YL, Pereira MM (2010) Ni-ZSM-5 catalysts: detailed characterization of metal sites for proper catalyst design. J Catal 269(1):103–109. doi: 10.1016/j.jcat.2009.10.021 CrossRefGoogle Scholar
  41. 41.
    Liu HM, Li YM, Wu H, Yang WW, He DH (2014) Promoting effect of glucose and beta-cyclodextrin on Ni dispersion of Ni/MCM-41 catalysts for carbon dioxide reforming of methane to syngas. Fuel 136:19–24. doi: 10.1016/j.fuel.2014.07.022 CrossRefGoogle Scholar
  42. 42.
    Rynkowski JM, Paryjczak T, Lenik M (1993) On the nature of oxidic nickel phases in NiO/γ-Al2O3 catalysts. Appl Catal A 106(1):73–82. doi: 10.1016/0926-860x(93)80156-K CrossRefGoogle Scholar
  43. 43.
    Yang RC, Li XG, Wu JS, Zhang X, Zhang ZH, Cheng YF, Guo JT (2009) Hydrotreating of crude 2-ethylhexanol over Ni/Al2O3 catalysts: surface Ni species-catalytic activity correlation. Appl Catal A 368(1–2):105–112. doi: 10.1016/j.apcata.2009.08.021 CrossRefGoogle Scholar
  44. 44.
    Xu Z, Li YM, Zhang JY, Chang L, Zhou RQ, Duan ZT (2001) Bound-state Ni species—a superior form in Ni-based catalyst for CH4/CO2 reforming. Appl Catal A 210(1–2):45–53. doi: 10.1016/S0926-860x(00)00798-5 CrossRefGoogle Scholar
  45. 45.
    Li CP, Chen YW (1995) Temperature-programmed-reduction studies of nickel-oxide alumina catalysts—effects of the preparation method. Thermochim Acta 256(2):457–465. doi: 10.1016/0040-6031(94)02177-P CrossRefGoogle Scholar
  46. 46.
    Louis C, Cheng ZX, Che M (1993) Characterization of Ni/SiO2 catalysts during impregnation and further thermal-activation treatment leading to metal particles. J Phys Chem 97(21):5703–5712. doi: 10.1021/J100123a040 CrossRefGoogle Scholar
  47. 47.
    Mlinar AN, Baur GB, Bong GG, Getsoian A, Bell AT (2012) Propene oligomerization over Ni-exchanged Na-X zeolites. J Catal 296:156–164. doi: 10.1016/j.jcat.2012.09.010 CrossRefGoogle Scholar
  48. 48.
    Pawelec B, Mariscal R, Navarro RM, Campos-Martin JM, Fierro JLG (2004) Simultaneous 1-pentene hydroisomerisation and thiophene hydrodesulphurisation over sulphided Ni/FAU and Ni/ZSM-5 catalysts. Appl Catal A 262(2):155–166. doi: 10.1016/j.apcata.2003.11.037 CrossRefGoogle Scholar
  49. 49.
    Roy PK, Prins R, Pirngruber GD (2008) The effect of pretreatment on the reactivity of Fe-ZSM-5 catalysts for N2O decomposition: dehydroxylation vs. steaming. Appl Catal B 80(3–4):226–236. doi: 10.1016/j.apcatb.2007.10.015 CrossRefGoogle Scholar
  50. 50.
    Wu HJ, Pantaleo G, La Parola V, Venezia AM, Collard X, Aprile C, Liotta LF (2014) Bi- and trimetallic Ni catalysts over Al2O3 and Al2O3-MOx (M = Ce or Mg) oxides for methane dry reforming: Au and Pt additive effects. Appl Catal B 156:350–361. doi: 10.1016/j.apcatb.2014.03.018 CrossRefGoogle Scholar
  51. 51.
    Langford JI, Wilson AJC (1978) Scherrer after 60 years—survey and some new results in determination of crystallite size. J Appl Crystallogr 11:102–113. doi: 10.1107/S0021889878012844 CrossRefGoogle Scholar
  52. 52.
    Gonzalez-delaCruz VM, Pereniguez R, Ternero F, Holgado JP, Caballero A (2012) In situ XAS study of synergic effects on Ni-CO/ZrO2 methane reforming catalysts. J Phys Chem C 116(4):2919–2926. doi: 10.1021/jp2092048 CrossRefGoogle Scholar
  53. 53.
    Bao ZH, Lu YW, Han J, Li YB, Yu F (2015) Highly active and stable Ni-based bimodal pore catalyst for dry reforming of methane. Appl Catal A 491:116–126. doi: 10.1016/j.apcata.2014.12.005 CrossRefGoogle Scholar
  54. 54.
    Juan-Juan J, Roman-Martinez MC, Illan-Gomez MJ (2006) Effect of potassium content in the activity of K-promoted Ni/Al2O3 catalysts for the dry reforming of methane. Appl Catal A 301(1):9–15. doi: 10.1016/j.apcata.2005.11.006 CrossRefGoogle Scholar
  55. 55.
    de Sousa FF, de Sousa HSA, Oliveira AC, Junior MCC, Ayala AP, Barros EB, Viana BC, Filho JM, Oliveira AC (2012) Nanostructured Ni-containing spinel oxides for the dry reforming of methane: effect of the presence of cobalt and nickel on the deactivation behaviour of catalysts. Int J Hydrog Energy 37(4):3201–3212. doi: 10.1016/j.ijhydene.2011.11.072 CrossRefGoogle Scholar
  56. 56.
    Helveg S, Lopez-Cartes C, Sehested J, Hansen PL, Clausen BS, Rostrup-Nielsen JR, Abild-Pedersen F, Norskov JK (2004) Atomic-scale imaging of carbon nanofibre growth. Nature 427(6973):426–429. doi: 10.1038/nature02278 CrossRefGoogle Scholar
  57. 57.
    Wang CZ, Sun NN, Zhao N, Wei W, Sun YH, Sun CG, Liu H, Snape CE (2015) Coking and deactivation of a mesoporous Ni-CaO-ZrO2 catalyst in dry reforming of methane: a study under different feeding compositions. Fuel 143:527–535. doi: 10.1016/j.fuel.2014.11.097 CrossRefGoogle Scholar
  58. 58.
    Newnham J, Mantri K, Amin MH, Tardio J, Bhargava SK (2012) Highly stable and active Ni-mesoporous alumina catalysts for dry reforming of methane. Int J Hydrog Energy 37(2):1454–1464. doi: 10.1016/j.ijhydene.2011.10.036 CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  1. 1.Department of Physical Chemistry, Faculty of Chemical TechnologyUniversity of PardubicePardubiceCzech Republic
  2. 2.Instituto de Ciencia de Materiales de Sevilla (CSIC-University of Seville)SevilleSpain

Personalised recommendations