Advertisement

Reaction Kinetics, Mechanisms and Catalysis

, Volume 119, Issue 1, pp 335–348 | Cite as

Supported Au/MIL-53(Al): a reusable green solid catalyst for the three-component coupling reaction of aldehyde, alkyne, and amine

  • Lili Liu
  • Xishi Tai
  • Nana Zhang
  • Qingguo Meng
  • Chunling Xin
Article

Abstract

MIL-53(Al) was synthesized in a mixture of aluminum nitrate, 1,4-benzenedicarboxylic acid, and water using the hydrothermal and reflux methods. A metal–organic-framework-supported Au-based heterogeneous catalyst (Au/MIL-53(Al)) was prepared using the impregnation method under mild conditions with HAuCl4·4H2O as the Au precursors. The physicochemical properties of the samples were characterized by X-ray diffraction (XRD), infrared spectroscopy (IR), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TG), transmission electron microscopy (TEM), and inductively coupled plasma atomic emission spectroscopy (ICP–AES). MIL-53(Al) indicates excellent chemical stability without structure degradation during the loading and catalysis process. The XPS spectra indicate that the catalyst Au/MIL-53(Al) contains coexisting Au0 and Au3+ ions. The catalytic performance of the catalyst was examined in one-pot synthesis of structurally divergent propargylamines via three component coupling of aldehyde, alkyne, and amine (A3) in 1,4-dioxane. The results showed that the catalyst Au/MIL-53(Al) displayed high activity without any additives or an inert atmosphere (the yield reached 97.9 % for 5 h at 120 °C). Au/MIL-53(Al) has proven to be applicable to a wide range of substrates. Various aromatic/aliphatic aldehydes, aromatic alkynes, and piperidine were able to undergo A3 coupling on the catalyst Au/MIL-53(Al). In addition, the catalyst could be recovered easily by centrifugation and reused three times.

Keywords

Metal–organic frameworks MIL-53(Al) Three component coupling reaction Propargylamines Gold 

Notes

Acknowledgments

This work was supported by the Promotive Research Fund for Young and Middle-aged Scientists of Shandong Province (BS2014CL021, BS2015CL012), the National Natural Science Foundation of Shandong (ZR2014BL003, ZR2015BM005), the Project of Shandong Province Higher Educational Science and Technology Program (J14LC01, J15LA09), and the Technology Research and Development Program of Weifang (201301035, 2015GX003).

References

  1. 1.
    Liu LL, Zhang X, Gao JS, Xu CM (2012) Green Chem 14:1710–1720CrossRefGoogle Scholar
  2. 2.
    Li P, Wang L (2007) Tetrahedron 63:5455–5459CrossRefGoogle Scholar
  3. 3.
    Choudary BM, Sridhar C, Kantam ML, Sreedhar B (2004) Tetrahedron Lett 5:7319–7321CrossRefGoogle Scholar
  4. 4.
    Imada Y, Yuassa M, Nakamura SI, Murahashi SI (1994) J Org Chem 59:2282–2284CrossRefGoogle Scholar
  5. 5.
    Dyatkin AB, Rivero RA (1998) Tetrahedron Lett 39:3647–3650CrossRefGoogle Scholar
  6. 6.
    Shabbir S, Lee Y, Rhee H (2015) J Catal 322:104–108CrossRefGoogle Scholar
  7. 7.
    Bhuyan D, Saikia M, Saikia L (2015) Catal Commun 58:158–163CrossRefGoogle Scholar
  8. 8.
    Srinivas V, Koketsu M (2013) Tetrahedron 69:8025–8033CrossRefGoogle Scholar
  9. 9.
    Blay G, Monleón A, Pedro JR (2009) Curr Org Chem 13:1498–1539CrossRefGoogle Scholar
  10. 10.
    Zhang X, Corma A (2008) Angew Chem Int Ed 47:4358–4361CrossRefGoogle Scholar
  11. 11.
    Kidwai M, Bansal V, Kumar A, Mozumdar S (2007) Green Chem 9:742–745CrossRefGoogle Scholar
  12. 12.
    Borah BJ, Borah SJ, Saikia K, Dutta DK (2014) Catal Sci Technol 4(11):4001–4009CrossRefGoogle Scholar
  13. 13.
    Nasrollahzadeh M, Sajadi SM (2015) RSC Adv 5(57):46240–46246CrossRefGoogle Scholar
  14. 14.
    Villaverde G, Corma A, Iglesias M, Sánchez F (2012) ACS Catal 2(3):399–406CrossRefGoogle Scholar
  15. 15.
    Lo VKY, Liu Y, Wong MK, Che CM (2006) Org Lett 8:1529–1532CrossRefGoogle Scholar
  16. 16.
    Wei C, Li Z, Li CJ (2003) Org Lett 5:4473–4475CrossRefGoogle Scholar
  17. 17.
    Palchak ZL, Lussier DJ, Pierce CJ, Larsen CH (2015) Green Chem 17(3):1802–1810CrossRefGoogle Scholar
  18. 18.
    Hua P, Lei W (2005) Chin J Chem 23(8):1076–1080CrossRefGoogle Scholar
  19. 19.
    Li CJ, Wei C (2002) Chem Commun 3:268–269CrossRefGoogle Scholar
  20. 20.
    Zhang X, Corma A (2007) Chem Commun 29:3080–3082CrossRefGoogle Scholar
  21. 21.
    GonzKlez-Arellano C, Corma A, Iglesias M, Sknchez F (2006) J Catal 238:497–501CrossRefGoogle Scholar
  22. 22.
    Gorin DJ, Toste FD (2007) Nature 446:395–403CrossRefGoogle Scholar
  23. 23.
    Widenhoefer RA, Han X (2006) Eur J Org Chem 20:4555–4563CrossRefGoogle Scholar
  24. 24.
    Liu LL, Zhang X, Gao JS, Xu CM (2012) Chin J Catal 33(5):833–841Google Scholar
  25. 25.
    Ishida T, Haruta M (2007) Angew Chem Int Ed 46:7154–7156CrossRefGoogle Scholar
  26. 26.
    Zhang X, Xamena FXL, Corma A (2009) J Catal 265:155–160CrossRefGoogle Scholar
  27. 27.
    Zhang ZX, Ding NN, Zhang WH, Chen JX, Young DJ, Hor TSA (2014) Angew Chem Int Ed 53(18):4628–4632CrossRefGoogle Scholar
  28. 28.
    Horike SM, Dincă K, Tamaki K, Long GR (2008) J Am Chem Soc 130:5854–5855CrossRefGoogle Scholar
  29. 29.
    Liu LL, Zhang X, Rang SM, Yang Y, Dai XP, Gao JS, Xu CM, He J (2014) RSC Adv 4:13093–13107CrossRefGoogle Scholar
  30. 30.
    Wu XF, Bao ZB, Yuan B, Wang J, Sun YQ, Luo HM, Deng SG (2013) Micropor Mesopor Mat 180:114–122CrossRefGoogle Scholar
  31. 31.
    Li B, Wen HM, Zhou W, Chen BL (2014) J Phys Chem Lett 5:3468–3479CrossRefGoogle Scholar
  32. 32.
    Dang GH, Dang TT, Le DT, Truong T, Phan NTS (2014) J Catal 319:258–264CrossRefGoogle Scholar
  33. 33.
    Duan CJ, Jie XM, Liu DD, Cao YM, Yuan Q (2014) J Membr Sci 466:92–102CrossRefGoogle Scholar
  34. 34.
    Yoona M, Moonb D (2015) Micropor Mesopor Mat 215:116–122CrossRefGoogle Scholar
  35. 35.
    Banerjee M, Das S, Yoon M, Choi HJ, Hyun MH, Park SM, Seo G, Kim KJ (2009) J Am Chem Soc 131:7524–7525CrossRefGoogle Scholar
  36. 36.
    Wu CD, Hu A, Zhang L, Lin W (2005) J Am Chem Soc 127:8940–8941CrossRefGoogle Scholar
  37. 37.
    Cho SH, Ma B, Nguyen ST, Hupp JT, Albrecht-Schmitt TE (2006) Chem Commun 24(45):2563–2565CrossRefGoogle Scholar
  38. 38.
    Wu CD, Lin W (2007) Angew Chem Int Ed 46:1075–1078CrossRefGoogle Scholar
  39. 39.
    Pera-Titus M, Savonnet M, Farrusseng D (2010) J Phys Chem C 114(41):17665–17674CrossRefGoogle Scholar
  40. 40.
    Guillou N, Livage C, Drillon M, Férey G (2003) Angew Chem Int Ed 42:5314–5317CrossRefGoogle Scholar
  41. 41.
    Devic T, Serre C, Auderbrand N, Marrot J, Férey G (2005) J Am Chem Soc 127(37):12788–12789CrossRefGoogle Scholar
  42. 42.
    Férey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surble S, Margiolaki I (2005) Science 309(5743):2040–2042CrossRefGoogle Scholar
  43. 43.
    Serre C, Mellot-Draznieks C, Surble S, Audebrand N, Filinchuk Y, Férey G (2007) Science 315(5820):1828–1831CrossRefGoogle Scholar
  44. 44.
    An Y, Li HL, Liu YY, Huang BB, Sun QL, Dai Y, Qin XY, Zhang XY (2016) J Solid State Chem 233:194–198CrossRefGoogle Scholar
  45. 45.
    Fateeva A, Chater PA, Ireland CP, Tahir AA, Khimyak YZ, Wiper PV, Darwent JA, Rosseinsky MJ (2012) Angew Chem Int Ed 51:7440–7444CrossRefGoogle Scholar
  46. 46.
    Yan JL, Jiang S, Ji SF, Shi D, Cheng HF (2015) Sci China Chem 58(10):1544–1552CrossRefGoogle Scholar
  47. 47.
    Li ZH, Wu YN, Li J, Zhang YM, Zou X, Li FT (2015) Chem Eur J 21:6913–6920CrossRefGoogle Scholar
  48. 48.
    Couck S, Denayer JF, Baron GV, Rmy T, Gascon J, Kapteijn F (2009) J Am Chem Soc 131:6326–6327CrossRefGoogle Scholar
  49. 49.
    Tan ZD, Tan HY, Shi XY, Ji Z, Yan YF, Zhou Y (2015) Inorg Chem Commun 61:128–131CrossRefGoogle Scholar
  50. 50.
    Tan HY, Wu JP (2014) Acta Phys-Chim Sin 30(4):715–722Google Scholar
  51. 51.
    Loiseau T, Serre C, Huguenard C, Fink G, Taulelle F, Henry M, Bataille T, Férey G (2004) Chem Eur J 10:1373–1382CrossRefGoogle Scholar
  52. 52.
    Liu Y, Her JH, Dailly A, Ramirez-Cuesta AJ, Neumann DA, Brown CM (2008) J Am Chem Soc 130:11813–11818CrossRefGoogle Scholar
  53. 53.
    Hamon L, Serre C, Devic T, Loiseau T, Millange F, Férey G, Weireld GD (2009) J Am Chem Soc 131:8775–8777CrossRefGoogle Scholar
  54. 54.
    Lian Q, Zhao Z, Liu J, Wei YC, Jiang GY, Duan AJ (2014) Acta Phys Chin Sin 30(1):129–134Google Scholar
  55. 55.
    Zhang F, Zou XQ, Sun FX, Ren H, Jiang Y, Zhu GS (2012) CrystEngComm 14:5487–5492CrossRefGoogle Scholar
  56. 56.
    Volkringer C, Loiseau T, Guillou N, Férey G, Elkaim E, Vimont A (2009) Dalton Trans 12(12):2241–2249CrossRefGoogle Scholar
  57. 57.
    Stavitski E, Pidko EA, Couck S, Remy T, Hensen EJM, Bert M, Weckhuysen BM, Denayer J, Gascon J, Kapteijn F (2011) Langmuir 27:3970–3976CrossRefGoogle Scholar
  58. 58.
    Meilikhov M, Yusenko K, Roland A, Fischer RA (2010) Dalton Trans 39:10990–10999CrossRefGoogle Scholar
  59. 59.
    Horcajada P, Serre C, Maurin G, Ramsahye NA, Balas F, Vallet-Reqí M, Sebban M, Taulelle F, Férey G (2008) J Am Chem Soc 130(21):6774–6780CrossRefGoogle Scholar
  60. 60.
    Zhang X, Shi H, Xu BQ (2007) Catal Today 122(3–4):330–337CrossRefGoogle Scholar
  61. 61.
    Hutchings GJ, Hall MS, Carley AF, Landon P, Solsona BE, Kiely CJ, Herzing A, Makkee M, Moulijn JA, Overweg A, Fierro-Gonzalez JC, Gates BC (2006) J Catal 242(1):71–81CrossRefGoogle Scholar
  62. 62.
    Zhang X, Shi H, Xu BQ (2005) Angew Chem Int Ed 44:7132–7135CrossRefGoogle Scholar
  63. 63.
    Casaletto MP, Longo A, Martorana A, Prestianni A, Venezia AM (2006) Surf Interface Anal 38:215–218CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  • Lili Liu
    • 1
  • Xishi Tai
    • 1
  • Nana Zhang
    • 1
  • Qingguo Meng
    • 1
  • Chunling Xin
    • 1
  1. 1.School of Chemistry and Chemical Engineering and Environmental EngineeringWeifang UniversityWeifangChina

Personalised recommendations