Advertisement

Reaction Kinetics, Mechanisms and Catalysis

, Volume 118, Issue 2, pp 509–521 | Cite as

Zn(II) coordination polymer as a bifunctional catalyst for biodiesel production from soybean oil

  • Faezeh Farzaneh
  • Faezeh Moghzi
  • Elnaz Rashtizadeh
Article

Abstract

In this study, a Zn coordination polymer with formula [Zn(4,4′-bipy)(OAc)2]n, designated as compound 1 was prepared with Zn acetate and 4,4′-bipyridine in ethanol. It was characterized using X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis, NH3 and CO2-TPD techniques. Compound 1 was found to be an efficient catalyst for biodiesel production. The effect of reaction parameters on the yield of fatty acid methyl esters (FAMEs or biodiesel) including the reaction temperature, time, molar ratios of methanol to oil and catalyst amount were investigated. Obtaining the highest biodiesel yield up to 98 % within 2 h in the presence of 2 % of compound 1 as catalyst (based on the soybean oil weight) together with its stability and reusability is promising. Due to insolubility of compound 1 in methanol and methyl esters, it can be easily separated and reused as catalyst. Therefore, the stability and reusability of 1 makes it a good alternative for biodiesel production.

Keywords

Biodiesel Soybean oil Heterogeneous catalyst Zn coordination polymer 

Notes

Acknowledgments

The financial support from the Alzahra University is gratefully acknowledged.

Supplementary material

11144_2016_986_MOESM1_ESM.doc (232 kb)
Supplementary material 1 (DOC 232 kb)

References

  1. 1.
    Atabania AE, Silitonga AS, Badruddina IA, Mahlia TMI, Masjuki HH, Mekhilef S (2012) Renew Sust Energ Rev 16:2070–2093CrossRefGoogle Scholar
  2. 2.
    Li E, Xu ZP, Rudolph V (2009) Appl Catal B 88:42–49CrossRefGoogle Scholar
  3. 3.
    MacLeod CS, Harvey AP, Lee AF, Wilson K (2008) Chem Eng J 135:63–70CrossRefGoogle Scholar
  4. 4.
    Srio MD, Tesser R, Pengmei L, Santacesaria E (2008) Energy Fuels 22:207–217CrossRefGoogle Scholar
  5. 5.
    Zabeti M, Daud WMAW, Aroua MK (2009) Fuel Process Technol 90:770–777CrossRefGoogle Scholar
  6. 6.
    Saraf S, Thomas B (2007) TransI ChemE. Part Process Saf Environ Protect 85(B5):360–364CrossRefGoogle Scholar
  7. 7.
    Marchetti JM, Miguel VU, Errazu AF (2007) Renew Sustain Energy Rev 11:1300–1311CrossRefGoogle Scholar
  8. 8.
    Leung DYC, Wu X, Leung MKH (2010) Appl Energy 87:1083–1095CrossRefGoogle Scholar
  9. 9.
    Shahbazi MR, Khoshandam B, Ghazvini Nasiri MM (2012) J Taiwan Inst Chem Eng 43:504–510CrossRefGoogle Scholar
  10. 10.
    Peterson G, Scarrah W (2007) J Am Oil Chem Soc 61:1593–1597CrossRefGoogle Scholar
  11. 11.
    Xie W, Peng H, Chen L (2006) Appl Catal A 300:67–74CrossRefGoogle Scholar
  12. 12.
    Atadashi IM, Aroua MK, Abdul Aziz AR, Sulaiman NMN (2013) Ind Eng Chem 19:14–26CrossRefGoogle Scholar
  13. 13.
    Sharma YC, Singh B, Korstad J (2011) Fuel 90:1309–1324CrossRefGoogle Scholar
  14. 14.
    Semwal S, Arora AK, Badoni RP, Tuli DK (2007) Bioresour Technol 102:2151–2161CrossRefGoogle Scholar
  15. 15.
    Singh Chouhan AP, Sarma AK (2013) AK. Renew Sust Energ Rev 15:4378–4399CrossRefGoogle Scholar
  16. 16.
    Perego C, Bosetti A (2011) Micropor Mesopor Mater 14:28–39CrossRefGoogle Scholar
  17. 17.
    Tantirungrotechai J, Thananupappaisal P, Yoosuk B, Viriya-empikul N, Faung-nawakij K (2011) Catal Commun 16:25–29CrossRefGoogle Scholar
  18. 18.
    Rashtizadeh E, Farzaneh F (2013) J Taiwan Inst ChemEngin 44:917–923CrossRefGoogle Scholar
  19. 19.
    Rashtizadeh E, Farzaneh F, Talebpour Z (2014) Bioresour Technol 154:32–37CrossRefGoogle Scholar
  20. 20.
    Helwani Z, Aziz N, Bakar MZA, Mukhtar H, Kim J, Mothman R (2013) Energy Convers Manag 73:128–134CrossRefGoogle Scholar
  21. 21.
    Babajide O, Musyoka N, Petrik L, Ameer F (2012) Catal Today 190:54–60CrossRefGoogle Scholar
  22. 22.
    Li J, Fu Y-J, Qu X-J, Wang W, Luo M, Zhao CJ, Zu YG (2012) Bioresour Technol 108:112–118CrossRefGoogle Scholar
  23. 23.
    Kesić Z, Lukić I, Brkić D, Rogan J, Zdujić M, Liu H, Skala D (2012) Appl Catal A 427–428:58–65Google Scholar
  24. 24.
    Pasupulet N, Gunda K, Liu Y, Rempel GL, Ng FTT (2013) Appl Catal A 452:189–202CrossRefGoogle Scholar
  25. 25.
    Tantirungrotechai J, Thepwatee S, Yoosuk B (2013) Fuel 106:279–284CrossRefGoogle Scholar
  26. 26.
    Hu S, Guan Y, Wang Y, Han H (2011) Appl Energy 88:2685–2690CrossRefGoogle Scholar
  27. 27.
    Usai EM, Sini MF, Meloni D, Solinas V, Salis A (2013) Micropor Mesopor Mater 179:54–62CrossRefGoogle Scholar
  28. 28.
    Lukic I, Krstic J, Jovanovic D, Skala D (2009) Bioresour Technol 100:4690–4696CrossRefGoogle Scholar
  29. 29.
    Feyzi M, Shahbazi E (2015) J Mol Catal A 404:13–138Google Scholar
  30. 30.
    Wu H, Zhang J, Wei Q, Zheng J, Zhang J (2013) Fuel Process Technol 109:13–18CrossRefGoogle Scholar
  31. 31.
    Rashtizadeh E, Farzaneh F, Ghandi M (2010) Fuel 89:3393–3398CrossRefGoogle Scholar
  32. 32.
    Suppes GJ, Dasari MA, Doskocil EJ, Mankidy PJ, Goff MJ (2004) Appl Catal A 257:213–223CrossRefGoogle Scholar
  33. 33.
    Wang Z, Chen G, Ding K (2009) Chem Rev 109:322–359CrossRefGoogle Scholar
  34. 34.
    Cirujano FG, Corma A, Llabrés i Xamena FX (2015) Catal Today 257:213–220CrossRefGoogle Scholar
  35. 35.
    Rowsell JLC, Yaghi OM (2004) Micropor Mesopor Mater 73:3–14CrossRefGoogle Scholar
  36. 36.
    Furukawa H, ller UM, Yaghi OM (2015) Angew. Chem Int Ed 54:2–16CrossRefGoogle Scholar
  37. 37.
    Chizallet C, Lazare S, Bazer-Bachi D, Bonnier F, Lecocq V, Soyer E, Quoineaud AA, Bats N (2010) J Am Chem Soc 132:12365–12377CrossRefGoogle Scholar
  38. 38.
    Song L, Zhang J, Sun L, Xu F, Li F, Zhang H, Si X, Jiao C, Li Z, Liu S, Zhou H, Liu Y, Sun D, Cao Z, Du Y, Gabelic Z (2012) Energy Environ Sci 5:7508–7520CrossRefGoogle Scholar
  39. 39.
    Cirujano FG, Corma A, LlabrésiXamena FX (2015) Chem Eng Sci 124:52–60CrossRefGoogle Scholar
  40. 40.
    de la Iglesia Oscar, Sorribas S, Almendro E, Zornoza B, Tellez C, Coronas J (2016) Renew Energy 88:12–19CrossRefGoogle Scholar
  41. 41.
    Ghoreishi Amiri M, Morsali A (2006) Z Anorg Allg Chem 632:2491–2494CrossRefGoogle Scholar
  42. 42.
    Celic TB, Mazaj M, Guillou N, Kaucic V, Logar NZ In: Proceedings, 3rd Croatian-Slovenian symposium on zeolites 2010Google Scholar
  43. 43.
    Jiang G, Zhang L, Zhao Z, Zhou X, Duan A, Xu C, Gao J (2008) Appl Catal A 340:176–182CrossRefGoogle Scholar
  44. 44.
    Topse NY, Pedersen K, Derouane EG (1981) J Catal 70:41–52CrossRefGoogle Scholar
  45. 45.
    De Lima AL, Mbengue A, SanGil RAS, Ronconi CM, Mota CJA (2014) Catal Today 226:210–216CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  • Faezeh Farzaneh
    • 1
  • Faezeh Moghzi
    • 1
  • Elnaz Rashtizadeh
    • 1
  1. 1.Department of Chemistry, Faculty of Physics and ChemistryAlzahra UniversityTehranIran

Personalised recommendations