Reaction Kinetics, Mechanisms and Catalysis

, Volume 118, Issue 1, pp 59–71

Study of the transition to higher iodide in the malonic acid Briggs–Rauscher oscillator

  • Stanley D. Furrow
  • Rinaldo Cervellati
  • Emanuela Greco
Article

Abstract

The interesting behavior of the Briggs–Raucher oscillating reaction does not stop with the end of oscillations. Depending on the initial concentrations, the classic mixture with malonic acid may undergo a sudden transition from a state with low [I2] and [I], to a state with high [I2] and [I]. A proposed mechanism involving radical attack on iodomalonic acid and diiodomalonic acid shows qualitative agreement with experiments.

Keywords

Iodomalonic acid Diiodomalonic acid Hydrogen peroxide Iodate 

References

  1. 1.
    Briggs S, Rauscher WC (1973) An oscillating iodine clock. J Chem Educ 50:496CrossRefGoogle Scholar
  2. 2.
    Shakhashiri B (1985) Chemical Demonstrations; A Handbook for Teachers of Chemistry. University of Wisconsin Press: Madison 2:248–256Google Scholar
  3. 3.
    Cooke DO (1980) The hydrogen peroxide-iodic acid-manganese (ii) –acetone oscillating system: further observations. Int J Chem Kinetics 12:683–698CrossRefGoogle Scholar
  4. 4.
    Furrow SD (1995) Comparison of several substrates in the Briggs–Rauscher oscillating system. J Phys Chem 99:11131–11140CrossRefGoogle Scholar
  5. 5.
    Furrow SD, Cervellati R, Amadori G (2002) New substrates for the oscillating Briggs–Rauscher reaction. J Phys Chem A 106:5841–5850CrossRefGoogle Scholar
  6. 6.
    Furrow SD, Cervellati R, Greco E (2012) A Study of the cerium-catalyzed Briggs–Rauscher oscillating reaction. Z Naturforsch 67b:1–9Google Scholar
  7. 7.
    Vanag VK (1992) A new autocatalytic step in the Briggs–Rauscher reaction. J Chem Biochem Kinet 2:75–83Google Scholar
  8. 8.
    Furrow SD, Aurentz DJ (2010) Reactions of iodomalonic acid, diiodomalonic acid, and other organics in the Briggs–Rauscher oscillating system. J Phys Chem A 114:2526–2533CrossRefGoogle Scholar
  9. 9.
    Furrow SD (2012) A modified recipe and variations for the Briggs–Rauscher oscillation reaction. J Chem Educ 89:1421–1424CrossRefGoogle Scholar
  10. 10.
    Vanag VK, Alfimov MV (1993) Effects of stirring on photoinduced phase transition in a batch-mode Briggs–Raucher reaction. J Phys Chem 97:1884–1890CrossRefGoogle Scholar
  11. 11.
    Vanag VK, Alfimov MV (1993) Light-induced nonequilibrium phase transition between quasistationary states of the briggs-rauscher reaction under batch conditions. J Phys Chem 97:1878–1883CrossRefGoogle Scholar
  12. 12.
    Epstein IR, Pojman JA (1998) An introduction to nonlinear chemical dynamics. Oxford University Press, New York, Oxford, pp 325–327Google Scholar
  13. 13.
    Rojas JC, John JM, Lee J, Gonzalez-Lima F (2009) Methylene blue provides behavioral and metabolic neuroprotection against optic neuropathy. Neuro Tox Res 15:260–273CrossRefGoogle Scholar
  14. 14.
    Cervellati R, Höner K, Furrow SD, Neddens C, Costa S (2001) The Briggs–Rauscher reaction as a test to measure the activity of antioxidants. Helv Chim Acta 84:3533–3547CrossRefGoogle Scholar
  15. 15.
    Cervellati R, Furrow SD (2013) Effects of additives on the oscillations of the Briggs–Rauscher reaction. Russ J Phys Chem A 87:2121–2126CrossRefGoogle Scholar
  16. 16.
    Čupić Ž, Lj Kolar-Anić, Anić S, Macešić S, Maksimović J, Pavlović M, Milenković M, Bubanja I, Greco E, Furrow SD, Cervellati R (2014) Regularity of intermittent bursts in Briggs–Rauscher oscillating systems with phenol. Helv Chim Acta 97:321–333CrossRefGoogle Scholar
  17. 17.
    Cervellati R, Furrow SD (2007) Perturbations of the Briggs–Rauscher oscillating system by iron-phenanthroline complexes. Inorg Chim Acta 360:842–848CrossRefGoogle Scholar
  18. 18.
    Cervellati R, Mongiorgi B (1998) Inhibition of chemical oscillations by bromide ion in the Briggs–Rauscher reaction. Int J Chem Kinet 30:641–646CrossRefGoogle Scholar
  19. 19.
    Cooke DO (1975) Preliminary investigations of the hydrogen-peroxide-iodic acid-manganese(ii)-malonic acid oscillating system. React Kinet Catal Lett 3:377–384CrossRefGoogle Scholar
  20. 20.
    Furrow SD, Noyes RM (1982) The oscillatory Briggs–Rauscher reaction. 2. Effects of substitutions and additions. J Am Chem Soc 104:42–45CrossRefGoogle Scholar
  21. 21.
    Schmitz G, Furrow S (2015) Bray–Liebhafsky and non-catalyzed Briggs–Rauscher oscillating reactions. Russ J Phys Chem A: in pressGoogle Scholar
  22. 22.
    Schmitz G (2011) Iodine oxidation by hydrogen peroxide and Bray–Liebhafsky oscillating reaction: effect of the temperature. Phys Chem Chem Phys 13:7102–7111CrossRefGoogle Scholar
  23. 23.
    Schmitz G (2004) Inorganic reactions of iodine(+1) in acidic solutions. Int J Chem Kin 36:480–493CrossRefGoogle Scholar
  24. 24.
    Turner DH, Flynn GW, Sutin N, Beitz JV (1972) Laser Raman temperature-jump study of the kinetics of the triodide equilibrium; relaxation times in the 10−8 to 10−7 second range. J Am Chem Soc 94:1554CrossRefGoogle Scholar
  25. 25.
    Liebhafsky HA, Mohammad A (1933) The kinetics of the reduction, in acid solution, of hydrogen peroxide by iodide ion. J Am Chem Soc 55:3977–3986CrossRefGoogle Scholar
  26. 26.
    Swartz HA, Bielski BHJ (1986) Reactions of HO, and 0,- with iodine and bromine and the 1,- and I atom reduction potentials. J Phys Chem 90:1445–1448CrossRefGoogle Scholar
  27. 27.
    Onel L, Bourceanu G, Wittmann M, Noszticzius Z, Szabo G (2008) I(+1) transfer from diiodomalonic acid to malonic acid and a complete inhibition of the CO and CO2 evolution in the Briggs–Rauscher reaction by resorcinol. J Chem Phys A 112:11649–11655CrossRefGoogle Scholar
  28. 28.
    Bielski BHJ, Cabelli DE, Arudi RL (1985) Reactivity of HO2/O2 radicals in aqueous solution. J Phys Chem Ref Data 14:1041–1100CrossRefGoogle Scholar
  29. 29.
    Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, Singhal M, Xu L, Mendes P, Kummer U (2006) COPASI: a COmplex PAthway SImulator. Bioinformatics 22:3067–3074CrossRefGoogle Scholar
  30. 30.
    Stanisavljev DR, Milenkovic MC, Mojovic MD, Popovic-Bijelic AD (2011) Oxygen centered radicals in iodide chemical oscillators. J Phys Chem A 115:7955–7958CrossRefGoogle Scholar
  31. 31.
    Stanisavljev DR, Milenkovic MC, Popovic-Bijelic AD, Mojovic MD (2013) Radicals in the Bray–Liebhafsky oscillatory reaction. J Phys Chem A 117:3292–3295CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Stanley D. Furrow
    • 1
  • Rinaldo Cervellati
    • 2
  • Emanuela Greco
    • 2
  1. 1.Emeritus, Penn State Berks CollegePennsylvania State UniversityReadingUSA
  2. 2.Dipartimento di Chimica “G. Ciamician”Università di BolognaBolognaItaly

Personalised recommendations