Advertisement

Reaction Kinetics, Mechanisms and Catalysis

, Volume 116, Issue 2, pp 371–383 | Cite as

Synthesis and 1-butene hydrogenation activity of platinum decorated bamboo-shaped multiwall carbon nanotubes

  • László Vanyorek
  • Ferenc Kristály
  • Andrea Mihalkó
  • Olivér Bánhidi
  • Ákos Kukovecz
  • Zoltán Kónya
  • János Lakatos
Article

Abstract

Bamboo-shaped carbon nanotubes (BCNT) were prepared from three different amines on supported iron (Fe) and nickel (Ni) catalysts by catalytic chemical vapor deposition. The main factors governing product morphology and defect site density were identified. Post-synthetic oxidative functionalization was used to add carboxyl groups to the nanotubes, and then platinum (Pt) nanoparticles were deposited on the surface by the in situ reduction of a platinum salt. The average Pt nanoparticle diameter was found to be affected by the extent of surface functionalization. The catalytic performance of the synthesized Pt/BCNT samples were examined in the hydrogenation of 1-butene, in order to show that the catalytic activity of the bamboo like carbon nanotube supported Pt catalyst is similar to the conventional Pt catalysts in heterogeneous catalytic hydrogenation. The best overall performance was achieved when the bamboo-shaped nanotube support was synthesized on 5 wt% Fe/Al(OH)3 catalyst from triethylamine and decorated with 5 wt% platinum nanoparticles.

Keywords

Bamboo-shaped multiwall carbon nanotubes Catalyst support 1-Butene hydrogenation 

Notes

Acknowledgments

This research was partially carried out in the framework of the Center of Applied Materials Science and Nano-Technology at the University of Miskolc. The financial support of the OTKA NN 110676 and OTKA K 112531 Projects is acknowledged.

Supplementary material

11144_2015_906_MOESM1_ESM.docx (5.6 mb)
Supplementary material 1 (DOCX 5768 kb)

References

  1. 1.
    Yu Z, Fareid LE, Moljord K, Blekkan EA, Walmsley JC, Chen D (2008) Appl Catal B 84:482–489CrossRefGoogle Scholar
  2. 2.
    Zhang Y, Zhang HB, Lin GD, Chen P, Yuan YZ, Tsai KR (1999) Appl Catal A 187:213–224CrossRefGoogle Scholar
  3. 3.
    Bahome MC, Jewell LL, Hildebrandt D, Glasser D, Coville NJ (2005) Appl Catal A 287:60–67CrossRefGoogle Scholar
  4. 4.
    Ovejero G, Sotelo JL, Rodriguez A, Diaz C, Sanz R, Garcia J (2007) Ind Eng Chem Res 46:6449–6455CrossRefGoogle Scholar
  5. 5.
    Chen WY, Ji J, Feng X, Duan XZ, Qian G, Li P, Zhou XG, Chen D, Yuan WK (2014) J Am Chem Soc 136:16736–16739CrossRefGoogle Scholar
  6. 6.
    Chambers A, Nemes T, Rodriguez NM, Baker RTK (1998) J Phys Chem B 102:2251–2258CrossRefGoogle Scholar
  7. 7.
    Serp P, Corrias M, Kalck P (2003) Appl Catal A253:337–358CrossRefGoogle Scholar
  8. 8.
    Pham-Huu C, Kelle N, Ehre G, Charbonniere LJ, Ziessel R, Ledoux MJ (2001) J Mol Catal A 170:155–163CrossRefGoogle Scholar
  9. 9.
    Onoe T, Iwamoto S, Inoue M (2007) Catal Commun 8:701–706CrossRefGoogle Scholar
  10. 10.
    Liao HG, Xiao YJ, Zhang HK, Liu PL, You KY, Luo H, Wei C (2012) Catal Commun 19:80–84CrossRefGoogle Scholar
  11. 11.
    Pereira MFR, Figueiredo JL, Oerfaó JJM, Serp P, Kalck P, Kihn Y (2004) Carbon 42:2807–2813CrossRefGoogle Scholar
  12. 12.
    Liu X, Su DS, Schlogl R (2008) Carbon 46:544–561CrossRefGoogle Scholar
  13. 13.
    Liu H, Zhang Y, Li R, Sun X, Desilets S, Abou-Rachid H, Jaidann M, Lussier LS (2010) Carbon 48:1498–1507CrossRefGoogle Scholar
  14. 14.
    Gan L, Lv L, Du H, Li B, Kang F (2009) Carbon 47:1833–1840CrossRefGoogle Scholar
  15. 15.
    Kumar M, Ando Y (2010) J Nanosci Nanotechnol 10:3739–3758CrossRefGoogle Scholar
  16. 16.
    Joseyacaman M, Mikiyoshida M, Rendon L, Santiesteban JG (1993) Appl Phys Lett 62:657–659CrossRefGoogle Scholar
  17. 17.
    Endo M, Takeuchi K, Kobori K, Takahashi K, Kroto HW, Sarkar A (1995) Carbon 33:873–881CrossRefGoogle Scholar
  18. 18.
    KovalevskiV SafronovAN (1998) Carbon 36:963–968CrossRefGoogle Scholar
  19. 19.
    Mayne M, Grobert N, Terrones M, Kamalakaran R, Rühle M, Kroto HW, Walton DRM (2001) Chem Phys Lett 338:101–107CrossRefGoogle Scholar
  20. 20.
    Reyes M, Grobert N, Kamalakaran R, Seeger T, Golberg D, Rühle M, Bando Y, Terrones H (2004) Chem Phys Lett 396:167–173CrossRefGoogle Scholar
  21. 21.
    Collins PG (2009) In: Narlikar AV, Fu YY (eds) Defects and disorder in carbon nanotubes in Oxford handbook of nanoscience and technology: frontiers and advances. Oxford University Press, OxfordGoogle Scholar
  22. 22.
    Dresselhaus MS, Dresselhaus G, Saito G, Jorio A (2005) Phys Rep 409:47–99CrossRefGoogle Scholar
  23. 23.
    Hussain S, Jha P, Chouksey A, Raman R, Islam SS, Islam T, Choudhary PK (2011) J Mod Phys 2:538–543CrossRefGoogle Scholar
  24. 24.
    Skákalová V, Kaiser AB, Dettlaff-Weglikowska U, Hrncariková K, Roth S (2005) J Phys Chem B 109:7174–7181CrossRefGoogle Scholar
  25. 25.
    Singh C, Shaffer MSP, Windle AH (2003) Carbon 41:359–368CrossRefGoogle Scholar
  26. 26.
    Reddy ALM, Ramaprabhu SR (2007) Int J Hydrog Energy 32:3998–4004CrossRefGoogle Scholar
  27. 27.
    Osorio AG, Silveira ICL, Bueno VL, Bergmann CP (2008) Appl Surf Sci 30:2485–2489CrossRefGoogle Scholar
  28. 28.
    Men XH, Zhang ZZ, Song HJ, Wang K, Jiang W (2008) Compos Sci Technol 68:1042–1049CrossRefGoogle Scholar
  29. 29.
    Shen J, Huang W, Wu L, Hu Y, Ye M (2007) Mat Sci Eng A 46:151–156CrossRefGoogle Scholar
  30. 30.
    Kitano H, Tachimoto K, Anraku Y (2007) J Colloid Interface Sci 306:28–33CrossRefGoogle Scholar
  31. 31.
    Fearon J, Watson GW (2006) J Mater Chem 16:1989–1996CrossRefGoogle Scholar
  32. 32.
    Davis SM, Zaera F, Somorjai GA (1984) J Catal 85:206–223CrossRefGoogle Scholar
  33. 33.
    Campbell CT, Sun YK, Weinberg WH (1991) Chem Phys Lett 179:53–57CrossRefGoogle Scholar
  34. 34.
    McCrea KR, Somorjai GA (2000) J Mol Catal A 16:43–53CrossRefGoogle Scholar
  35. 35.
    Bratlie KM, Flores LD, Somorjai GA (2005) Surf Sci 599:93–106CrossRefGoogle Scholar
  36. 36.
    Bratlie KM, Somorjai GA (2007) J Phys Chem C 111:6837–6845CrossRefGoogle Scholar
  37. 37.
    Valden M, Lai X, Goodman DW (1998) Science 281:1647–1650CrossRefGoogle Scholar
  38. 38.
    Solhy A, Machado BF, Beausolei J, Kihn Y, Gonçalves F, Pereira MFR, Órfão JJM, Figueiredo JL, Faria JL, Serp P (2008) Carbon 46:1194–1207CrossRefGoogle Scholar
  39. 39.
    Li W, Liang C, Zhou W, Qiu J, Zhou Z, Sun G, Xin Q (2003) J Phys Chem B 107:6292–6299CrossRefGoogle Scholar
  40. 40.
    Wang CH, Du HY, Hsu HC, Chang ST, Huang HC, Chen LC, Chen KH (2012) Int J Hydrog Energy 37:10663–10670CrossRefGoogle Scholar
  41. 41.
    Shao Y, Kou R, Wang J, Wang CM, Vishwanathan VV, Liu J, Wang Y, Lin Y (2009) J Nanosci Nanotechnol 9:5811–5815CrossRefGoogle Scholar
  42. 42.
    Pillai SK, Ray SS, Moodley M (2008) J Nanosci Nanotechnol 8:6187–6207CrossRefGoogle Scholar
  43. 43.
    Kukovecz A, Konya Z, Nagaraju N, Willems I, Tamasi A, Fonseca A, Nagy JB, Kiricsi I (2000) Phys Chem Chem Phys 2:3071–3076CrossRefGoogle Scholar
  44. 44.
    Szabó A, Méhn D, Kónya Z, Fonseca A, Nagy JB (2003) Phys Chem Comm 6:40–41Google Scholar
  45. 45.
    Nagy JB, Bister G, Fonseca A, Méhn D, Kónya Z, Kiricsi I, Horváth ZE, Biró LP (2004) J Nanosci Nanotechnol 4:326–345CrossRefGoogle Scholar
  46. 46.
    Vanyorek L, Meszaros R, Barany S (2014) Colloids Surf A 448:140–146CrossRefGoogle Scholar
  47. 47.
    Lear T, Marshall R, Sanchez AL, Jackson D, Klapötke TM, Bäumer M, Rupprechter G, Freund H, Lennon D (2005) J Chem Phys 123:174706CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • László Vanyorek
    • 1
  • Ferenc Kristály
    • 2
  • Andrea Mihalkó
    • 3
  • Olivér Bánhidi
    • 1
  • Ákos Kukovecz
    • 4
    • 5
  • Zoltán Kónya
    • 4
    • 6
  • János Lakatos
    • 1
  1. 1.Institute of ChemistryUniversity of MiskolcMiskolc-EgyetemvárosHungary
  2. 2.Institute of Mineralogy and GeologyUniversity of MiskolcMiskolc-EgyetemvárosHungary
  3. 3.Wanhua BorsodChem ZrtKazincbarcikaHungary
  4. 4.Department of Applied & Environmental ChemistryUniversity of SzegedSzegedHungary
  5. 5.MTA-SZTE “Lendület” Porous Nanocomposites Research GroupSzegedHungary
  6. 6.MTA-SZTE Reaction Kinetics and Surface Chemistry Research GroupSzegedHungary

Personalised recommendations