Theoretical studies in catalysis and electrocatalysis: from fundamental knowledge to catalyst design

  • Igor A. Pašti
  • Natalia V. Skorodumova
  • Slavko V. MentusEmail author


Catalytic processes are an indispensable part of a large number of contemporary technologies that stimulate a constant research and development effort in the field. Computational methods represent a valuable tool to investigate crucial steps of catalytic cycles able to reveal the main characteristics of a catalyst and provide a basis for the design of materials with superior catalytic activity. This review is focused on the recent advances in density functional theory studies of the interactions of reactive species and intermediates with solid surfaces. As examples, we discuss the catalysts for the CO oxidation and electrocatalysis of H2 and O2 electrode reactions. We demonstrate how the theoretical modelling can contribute to the understanding of catalytic processes and help to design new catalysts and electrocatalysts.


Catalysis Electrocatalysis Density functional theory Catalyst design 



I.A.P. and S.V.M. acknowledge the support provided by the Serbian Ministry of Education, Science and Technological Development through the contract no. III45014. I.A.P. and N.V.S. acknowledge the support provided by the Swedish Research Council through the project “Catalysis by metal clusters supported by complex oxide substrates”. S.V.M. also acknowledges the support provided by the Serbian Academy of Sciences and Arts through the project “Electrocatalysis in the contemporary processes of energy conversion”.


  1. 1.
    Maxwell IE (1996) Stud Surf Sci Catal 101:1–9CrossRefGoogle Scholar
  2. 2.
    Nørskov JK, Abild-Pedersena F, Studt F, Bligaard T (2011) Proc Natl Acad Sci 118:937–943CrossRefGoogle Scholar
  3. 3.
    Marković NM, Ross PN (2002) Progr Surf Sci 45:117–229CrossRefGoogle Scholar
  4. 4.
    Sabatier P (1911) Ber Deutch Chem Soc 44:1984–2001CrossRefGoogle Scholar
  5. 5.
    Brønsted JN (1928) Chem Rev 5:231–338CrossRefGoogle Scholar
  6. 6.
    Evans MG, Polanyi NP (1938) Trans Faraday Soc 34:11–24CrossRefGoogle Scholar
  7. 7.
    Bligaard T, Nørskov JK, Dahl S, Matthiesen J, Christensen CH, Sehested J (2004) J Catal 224:206–217CrossRefGoogle Scholar
  8. 8.
    Opportunities for Catalysis in the 21st Century, Basic Energy Sciences Advisory Committee Subpanel Workshop Report (2002). Accesses 15 Sept 2014
  9. 9.
    Putanov P (2010) New breakthroughs in catalysis and the quiet scientific and technological revolution. In: Putanov P (ed) Catalysis in scientific and educational programs and in public development of Serbia. Serbian Academy of Sciences and Arts, Branch in Novi Sad, Novi Sad pp 13–25Google Scholar
  10. 10.
    Pettersson LGM, Nilsson A (2014) Top Catal 57:2–13CrossRefGoogle Scholar
  11. 11.
    Hammer B, Nørskov JK (1995) Nature 376:238–240CrossRefGoogle Scholar
  12. 12.
    Nilsson A, Pettersson LGM (2008) In: Nilsson A, Pettersson LGM, Nørskov JK (eds) Chemical bonding at surfaces and interfaces. Elsevier, AmsterdamGoogle Scholar
  13. 13.
    Pasti IA, Baljozović M, Skorodumova NV (2014) Surf Sci. doi: 10.1016/j.susc.2014.09.012 Google Scholar
  14. 14.
    Amft M, Skorodumova NV (2010) Phys Rev B 81:195443CrossRefGoogle Scholar
  15. 15.
    Yoon B, Häkkinen H, Landman U, Wörz AS, Antonietti JM, Abbet S, Judai K, Heiz U (2005) Science 307:403–407CrossRefGoogle Scholar
  16. 16.
    Frusteri F, Freni S, Spadaro L, Chiodo V, Bonura G, Donato S, Cavallaro S (2004) Catal Commun 5:611–615CrossRefGoogle Scholar
  17. 17.
    Frusteri F, Freni S, Chiodo V, Spadaro L, Di Blasi O, Bonura G, Cavallaro S (2004) Appl Catal A Gen 270:1–7CrossRefGoogle Scholar
  18. 18.
    Hansen EW, Neurock M (2000) J Catal 196:241–252CrossRefGoogle Scholar
  19. 19.
    Linic S, Barteau MA (2003) J Catal 214:200–212CrossRefGoogle Scholar
  20. 20.
    Trasatti S (1972) J Electroanal Chem 39:163–184CrossRefGoogle Scholar
  21. 21.
    Jerkiewicz G (1998) Prog Surf Sci 57:137–186CrossRefGoogle Scholar
  22. 22.
    Quaino P, Juarez F, Santos E, Schmickler W (2014) Beilstein J Nanotechnol 5:846–854CrossRefGoogle Scholar
  23. 23.
    Hammer B, Nørskov JK (1995) Surf Sci 343:211–220CrossRefGoogle Scholar
  24. 24.
    Mavrikakis M, Hammer B, Nørskov JK (1998) Phys Rev Lett 81:2819–2822CrossRefGoogle Scholar
  25. 25.
    Pallassana V, Neurock M, Hansen LB, Nørskov JK (2000) J Chem Phys 112:5435–5439CrossRefGoogle Scholar
  26. 26.
    Tang H, Trout BL (2005) J Phys Chem B 109:17630–17634CrossRefGoogle Scholar
  27. 27.
    Pašti IA, Gavrilov NM, Mentus SV (2014) Electrochim Acta 130:453–463CrossRefGoogle Scholar
  28. 28.
    Abild-Pedersen F, Greeley J, Studt F, Rossmeisl J, Munter TR, Moses PG, Skúlason E, Bligaard T, Nørskov JK (2007) Phys Rev Lett 99:016105CrossRefGoogle Scholar
  29. 29.
    Mom RV, Cheng J, Koper MTM, Sprik M (2014) J Phys Chem C 118:4095–4102CrossRefGoogle Scholar
  30. 30.
    Aryanpour M, Khetan A, Pitsch H (2013) ACS Catal 3:1253–1262CrossRefGoogle Scholar
  31. 31.
    Fajin JLC, Cordeiro M, Illas F, Gomes JRB (2010) J Catal 276:92–100CrossRefGoogle Scholar
  32. 32.
    Vojvodic A, Hellman A, Ruberto C, Lundqvist BI (2009) Phys Rev Lett 103:146103CrossRefGoogle Scholar
  33. 33.
    Cheng J, Hu P (2008) J Am Chem Soc 130:10868–10869CrossRefGoogle Scholar
  34. 34.
    Andersson MP, Bligaard T, Kustov A, Larsen KE, Greeley J, Johannessen T, Christensen CH, Nørskov JK (2006) J Catal 239:501–506CrossRefGoogle Scholar
  35. 35.
    Studt F, Abild-Pedersen F, Bligaard T, Sørensen RZ, Christensen CH, Nørskov JK (2008) Science 320:1320–1322CrossRefGoogle Scholar
  36. 36.
    Jacobsen CJH, Dahl S, Clausen BS, Bahn S, Logadottir A, Nørskov JK (2001) J Am Chem Soc 123:8404–8405CrossRefGoogle Scholar
  37. 37.
    Grabow LS, Studt F, Abild-Pedersen F, Petzold V, Kleis J, Bligaard T, Nørskov JK (2011) Angew Chem Int Ed 50:4601–4605CrossRefGoogle Scholar
  38. 38.
    Sauer J (2008) In: Morokuma K, Musaev DG (eds) Computational modeling for homogeneous and enzymatic catalysis. Wiley, WeinheimGoogle Scholar
  39. 39.
    Sauer J, Döbler J (2004) Dalton Trans 19:3116–3121CrossRefGoogle Scholar
  40. 40.
    Suntivich J, May KJ, Gasteiger HA, Goodenough JB, Shao-Horn Y (2011) Science 334:1383–1385CrossRefGoogle Scholar
  41. 41.
    Vojvodic A, Nørskov JK (2011) Science 334:1355–1356CrossRefGoogle Scholar
  42. 42.
    Suntivich J, Gasteiger HA, Yabuuchi N, Nakanishi H, Goodenough JB, Shao-Horn Y (2011) Nat Chem 3:546–550CrossRefGoogle Scholar
  43. 43.
    Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jónsson H (2004) J Phys Chem B 108:17886–17892CrossRefGoogle Scholar
  44. 44.
    Nørskov JK, Bligaard T, Logadottir A, Kitchin JR, Chen JG, Pandelov S, Stimming U (2005) J Electrochem Soc 152:J23–J26CrossRefGoogle Scholar
  45. 45.
    Greeley J, Jaramillo TF, Bonde J, Chorkendorff I, Norskov JK (2005) Nat Mater 5:909–913CrossRefGoogle Scholar
  46. 46.
    Lee YL, Kleis J, Rossmeisl J, Shao-Horn Y, Morgan D (2011) Energy Environ Sci 4:3966–3970CrossRefGoogle Scholar
  47. 47.
    Engel T, Ertl G (1979) Adv Catal 28:1–78Google Scholar
  48. 48.
    Eley DD, Rideal EK (1946) Nature 146:401–402CrossRefGoogle Scholar
  49. 49.
    Stampfl C, Scheffler M (1997) Phys Rev Lett 78:1500–1503CrossRefGoogle Scholar
  50. 50.
    Hendriksen BLM, Frenken JWM (2002) Phys Rev Lett 89:046101CrossRefGoogle Scholar
  51. 51.
    Hendriksen BLM, Bobaru SC, Frenken JWM (2004) Surf Sci 552:229–242CrossRefGoogle Scholar
  52. 52.
    Zhang C, Hu P, Alavi A (1999) J Am Chem Soc 121:7931–7932CrossRefGoogle Scholar
  53. 53.
    Over H, Muhler M (2003) Prog Surf Sci 72:3–17CrossRefGoogle Scholar
  54. 54.
    Gong XQ, Liu ZP, Raval R, Hu P (2004) J Am Chem Soc 126:8–9CrossRefGoogle Scholar
  55. 55.
    Jiang T, Mowbray DJ, Dobrin S, Falsig H, Hvolbæk B, Bligaard T, Nørskov JK (2009) J Phys Chem C 113:10548–10553CrossRefGoogle Scholar
  56. 56.
    Broqvist P, Panas I, Persson H (2002) J Catal 210:198–206CrossRefGoogle Scholar
  57. 57.
    Shapovalov V, Metiu H (2007) J Catal 245:205–214CrossRefGoogle Scholar
  58. 58.
    Andersson DA, Simak SI, Skorodumova NV, Abrikosov IA, Johansson B (2007) Phys Rev B 76:174119CrossRefGoogle Scholar
  59. 59.
    Andersson DA, Simak SI, Skorodumova NV, Abrikosov IA, Johansson B (2007) Appl Phys Lett 90:031909CrossRefGoogle Scholar
  60. 60.
    Chen F, Liu D, Zhang J, Hu P, Gong XQ, Lu G (2012) Phys Chem Chem Phys 14:16573–16580CrossRefGoogle Scholar
  61. 61.
    Song YL, Yin LL, Zhang J, Hu P, Gong XQ, Lu G (2013) Surf Sci 618:140–147CrossRefGoogle Scholar
  62. 62.
    Liu ZP, Hu P, Alavi A (2002) J Am Chem Soc 124:14770–14779CrossRefGoogle Scholar
  63. 63.
    Haruta M, Kobayashi T, Sano H, Yamada N (1987) Chem Lett 16:405–408CrossRefGoogle Scholar
  64. 64.
    Haruta M (1997) Catal Today 36:153–166CrossRefGoogle Scholar
  65. 65.
    Amft M, Johansson B, Skorodumova NV (2012) J Chem Phys 136:024312CrossRefGoogle Scholar
  66. 66.
    Kung MC, Davis RJ, Kung HH (2007) J Phys Chem C 111:11767–11775CrossRefGoogle Scholar
  67. 67.
    Lopez N, Nørskov JK (2002) J Am Chem Soc 124:11262–11263CrossRefGoogle Scholar
  68. 68.
    Häkkinen H, Landman U (2001) J Am Chem Soc 123:9704–9705CrossRefGoogle Scholar
  69. 69.
    Lopez N, Janssens TVW, Clausen BS, Xu Y, Mavrikakis M, Bligaard T, Nørskov JK (2004) J Catal 223:232–235CrossRefGoogle Scholar
  70. 70.
    Molina LM, Hammer B (2003) Phys Rev Lett 90:206102CrossRefGoogle Scholar
  71. 71.
    Molina LM, Hammer B (2004) Phys Rev B 69:155424CrossRefGoogle Scholar
  72. 72.
    Stamatakis M, Christiansen MA, Vlachos DG, Mpourmpakis G (2012) Nano Lett 12:3621–3626CrossRefGoogle Scholar
  73. 73.
    Liu ZP, Gong XQ, Kohanoff J, Sanchez C, Hu P (2003) Phys Rev Lett 91:266102CrossRefGoogle Scholar
  74. 74.
    Liu LM, McAllister B, Ye HQ, Hu P (2006) J Am Chem Soc 128:4017–4022CrossRefGoogle Scholar
  75. 75.
    Song W, Hensen EJM (2013) Catal Sci Technol 3:3020–3029CrossRefGoogle Scholar
  76. 76.
    Bongiorno A, Landman U (2005) Phys Rev Lett 95:106102CrossRefGoogle Scholar
  77. 77.
    Amft M, Skorodumova NV (2001) arXiv:1108.4669v1 [cond-mat.mes-hall]Google Scholar
  78. 78.
    Santos E, Quaino P, Schmickler W (2012) Phys Chem Chem Phys 14:11224–11233CrossRefGoogle Scholar
  79. 79.
    Greeley J, Rossmeisl J, Hellmann A, Nørskov JK (2009) Z Phys Chem 221:1209–1220CrossRefGoogle Scholar
  80. 80.
    Conway BE (1995) Prog Surf Sci 49:331–452CrossRefGoogle Scholar
  81. 81.
    Björketun ME, Bondarenko AS, Abrams BL, Chorkendorff I, Rossmeisl J (2010) Phys Chem Chem Phys 12:10536–10541CrossRefGoogle Scholar
  82. 82.
    Esposito DV, Hunt ST, Kimmel YC, Chen JG (2012) J Am Chem Soc 134:3025–3033CrossRefGoogle Scholar
  83. 83.
    Esposito DV, Chen JG (2011) Energy Environ Sci 4:3900–3912CrossRefGoogle Scholar
  84. 84.
    Esposito DV, Hunt ST, Stottlemyer AL, Dobson KD, McCandless BE, Birkmire RW, Chen JG (2010) Angew Chem Int Ed 49:9859–9862CrossRefGoogle Scholar
  85. 85.
    Nikolic VM, Perovic IM, Gavrilov NM, Pašti IA, Saponjic AB, Vulic PJ, Karic SD, Babic BM, Marceta Kaninski MP (2014) Int J Hydrogen Energy 39:11175–11185CrossRefGoogle Scholar
  86. 86.
    Vasić DD, Pašti IA, Mentus SV (2013) Int J Hydrog Energy 38:5009–5018CrossRefGoogle Scholar
  87. 87.
    Vasić Anićijević DD, Nikolić VM, Marčeta-Kaninski MP, Pašti IA (2013) Int J Hydrog Energy 38:16071–16079CrossRefGoogle Scholar
  88. 88.
    Kelly TG, Stottlemyer AL, Ren H, Chen JG (2011) J Phys Chem C 115:6644–6650CrossRefGoogle Scholar
  89. 89.
    Stamenkovic VR, Fowler B, Mun BS, Wang G, Ross PN, Lucas CA, Marković NM (2007) Science 315:493–497CrossRefGoogle Scholar
  90. 90.
    Stamenkovic VR, Mun BS, Arenz M, Mayrhofer KJJ, Lucas CA, Wang G, Ross PN, Markovic NM (2007) Nat Mater 6:241–247CrossRefGoogle Scholar
  91. 91.
    Stamenković V, Mun BS, Mayrhofer KJ, Ross PN, Marković NM, Rossmeisl J, Greeley J, Nørskov JK (2006) Angew Chem Int Ed 45:2897–2901CrossRefGoogle Scholar
  92. 92.
    Ramírez-Caballero GE, Ma Y, Callejas-Tovara R, Balbuena PB (2010) Phys Chem Chem Phys 12:2209–2218CrossRefGoogle Scholar
  93. 93.
    Balbuena PB, Callejas-Tovar R, Hirunsit P, Martínez de la Hoz JM, Ma Y, Ramírez-Caballero GE (2012) Top Catal 55:332–335CrossRefGoogle Scholar
  94. 94.
    Calle-Vallejo F, Koper MTM, Bandarenka AS (2013) Chem Soc Rev 42:5210–5230CrossRefGoogle Scholar
  95. 95.
    Wang Y, Balbuena PB (2005) J Phys Chem B 109:18902-18706Google Scholar
  96. 96.
    Greeley J, Stephens IEL, Bondarenko AS, Johansson TP, Hansen HA, Jaramillo TF, Rossmeisl J, Chorkendorff I, Nørskov JK (2009) Nat Chem 1:552–556CrossRefGoogle Scholar
  97. 97.
    Stephens IEL, Bondarenko AS, Grønbjerg U, Rossmeisl J, Chorkendorff I (2012) Energy Environ Sci 5:6744–6762CrossRefGoogle Scholar
  98. 98.
    Escudero-Escribano M, Verdaguer-Casadevall A, Malacrida P, Grønbjerg U, Knudsen BP, Jepsen AK, Rossmeisl J, Stephens IEL, Chorkendorff I (2012) J Am Chem Soc 134:16476–16479CrossRefGoogle Scholar
  99. 99.
    Pašti IA, Gavrilov NM, Baljozović M, Mitrić M, Mentus SV (2013) Electrochim Acta 114:706–712CrossRefGoogle Scholar
  100. 100.
    Pašti I, Mentus S (2009) Mater Chem Phys 116:94–101CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • Igor A. Pašti
    • 1
  • Natalia V. Skorodumova
    • 2
    • 3
  • Slavko V. Mentus
    • 1
    • 4
    Email author
  1. 1.Faculty of Physical ChemistryUniversity of BelgradeBelgradeSerbia
  2. 2.Multiscale Materials Modelling, Materials Science and Engineering, School of Industrial Engineering and ManagementKTH - Royal Institute of TechnologyStockholmSweden
  3. 3.Department of Physics and AstronomyUppsala UniversityUppsalaSweden
  4. 4.Serbian Academy of Sciences and ArtsBelgradeSerbia

Personalised recommendations