Reaction Kinetics, Mechanisms and Catalysis

, Volume 114, Issue 1, pp 109–119 | Cite as

Modelling of methane dry reforming over Ni/Al2O3 catalyst in a fixed-bed catalytic reactor

  • Yacine BenguerbaEmail author
  • Lila Dehimi
  • Mirella Virginie
  • Christine Dumas
  • Barbara Ernst


The dry reforming of CH4 in a fixed-bed catalytic reactor for the production of hydrogen at different temperatures over supported Ni catalyst has been studied. In the simulation of the reactor, a one-dimensional heterogeneous model is applied. Temperature and concentration gradients are accounted for in the axial direction only. The reactor model for the dry reforming of methane used the Richardson and Paripatyadar kinetics and the Snoeck et al. kinetics for the coke-deposition and gasification reactions. The effect of using different temperatures on the performance of the reactor was analyzed. The amounts of each species consumed or/and produced were calculated and compared with the experimental determined ones. It was shown that the Richardson and Paripatyadar–Snoeck et al. kinetics gave a good fit and accurately predicted the experimental observed profiles from the fixed bed reactor, and thus the degree of conversion of CH4 and CO2.


Dry reforming of methane Greenhouse gas Modelling Catalytic reactor 

List of symbols


Pressure (bar)


Heat capacity (J kg−1 K−1)


Molar flow rate (mol s−1)


Heat of reaction (kJ mol−1)


Reaction rate constant (see Table 2)


Adsorption constant (see Table 2)


Equilibrium constant for reaction i (see Table 2)


Specific rate of reaction (mol kg−1 s−1)


Universal gas constant (J mol−1 K−1)


Transversal reactor cross section (m2)


Temperature (K)


Gas velocity (m s−1)


Catalyst bed density (kg m−3)


Dimensionless length (-)


Conversion (-)


Global heat transfer coefficient (W m−1 °C−1)


Reactor length (m)


Reactor external diameter (m)


  1. 1.
    Bradford MCJ, Vannice MA (1998) CO2 reforming of CH4 over supported Pt catalysts. J Catal 173:157–171CrossRefGoogle Scholar
  2. 2.
    Arkatova LA (2010) The deposition of coke during carbon dioxide reforming of methane over intermetallides. Catal Today 157:170–176CrossRefGoogle Scholar
  3. 3.
    Djaidja A, Libs S, Kiennemann A, Barama A (2006) Characterization and activity in dry reforming of methane on NiMg/Al and Ni/MgO catalysts. Catal Today 113:194–200CrossRefGoogle Scholar
  4. 4.
    Nagaoka K, Seshan K, Aika K, Lercher JA (2001) Carbon deposition during carbon dioxide reforming of methane and comparison between Pt/Al2O3 and Pt/ZrO2. J Catal 197:34–42CrossRefGoogle Scholar
  5. 5.
    Ballarini AD, de Miguel SR, Jablonski EL, Scelza OA, Castro AA (2005) Reforming of CH4 with CO2 on Pt-supported catalysts: effect of the support on the catalytic behaviour. Catal Today 107–108:481–486CrossRefGoogle Scholar
  6. 6.
    Guo F, Zhang Y, Zhang G, Zhao H (2013) Syngas production by carbon dioxide reforming of methane over different semi-cokes. J Power Sources 231:82–90CrossRefGoogle Scholar
  7. 7.
    Kaengsilalai A, Luengnaruemitchai A, Jitkarnka S, Wongkasemjit S (2007) Potential of Ni supported on KH zeolite catalysts for carbon dioxide reforming of methane. J Power Sources 165:347–352CrossRefGoogle Scholar
  8. 8.
    Valderrama G, Kiennemann A, Goldwasser MR (2010) La-Sr-Ni-Co-O based perovskite-type solid solutions as catalyst precursors in the CO2 reforming of methane. J Power Sources 195:1765–1771CrossRefGoogle Scholar
  9. 9.
    Froment GF, Bischoff KB (1990) Chemical reactor analysis and design, 2nd edn. Wiley, New YorkGoogle Scholar
  10. 10.
    Richardson JT, Paripatyadar SA (1990) Carbon dioxide reforming of methane with supported rhodium. Appl Catal 61:293–309CrossRefGoogle Scholar
  11. 11.
    Olsbye U, Wurzel T, Mleczko L (1997) Kinetic and reaction engineering studies of dry reforming of methane over a Ni/La/Al2O3 catalyst. Ind Eng Chem Res 36(12):5180–5188CrossRefGoogle Scholar
  12. 12.
    Rostrup-Nielsen JR (1983) Catalytic steam reforming. In: Anderson JR, Boudart M (eds) Catalysis science and technology, vol 5. Springer, Berlin, pp 1–118Google Scholar
  13. 13.
    Claridge JB, Green MLH, Tsang SC, York APE, Ashcroft AT, Battle PD (1993) A study of carbon deposition on catalysts during the partial oxidation of methane to synthesis gas. Catal Lett 22:299–305CrossRefGoogle Scholar
  14. 14.
    Snoeck J-W, Froment GF, Fowles M (1997) Filamentous carbon formation and gasification: thermodynamics, driving force, nucleation and steady-state growth. J Catal 169:240–249CrossRefGoogle Scholar
  15. 15.
    Snoeck J-W, Froment GF, Fowles M (1997) Kinetic study of the carbon filament formation by methane cracking on a nickel catalyst. J Catal 169:250–262CrossRefGoogle Scholar
  16. 16.
    Snoeck J-W, Froment GF, Fowles M (2002) Steam/CO2 reforming of methane. Carbon filament formation by the Boudouard reaction and gasification by CO2, by H2, and by steam: kinetic study. Ind Eng Chem Res 41:4252–4265CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • Yacine Benguerba
    • 1
    Email author
  • Lila Dehimi
    • 1
  • Mirella Virginie
    • 2
  • Christine Dumas
    • 2
  • Barbara Ernst
    • 2
  1. 1.Laboratoire de Génie des Procédés ChimiquesUniversité Sétif1SétifAlgérie
  2. 2.Laboratoire de Reconnaissance et Procédés de Séparation Moléculaire (RePSeM)Université de Strasbourg IPHC-DSA, UMR CNRS 7178, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM)Strasbourg Cedex 2France

Personalised recommendations