Reaction Kinetics, Mechanisms and Catalysis

, Volume 111, Issue 1, pp 167–182 | Cite as

Behavior of different soot combustion catalysts under NOx/O2. Importance of the catalyst–soot contact

  • Noelia Guillén-Hurtado
  • Franz Edwin López-Suárez
  • Agustín Bueno-López
  • Avelina García-García


Four different catalysts (Pt/Al2O3, Ce0.8Zr0.2O2, PrO2−x and SrTiCuO3) have been investigated on a laboratory scale to evaluate their potential as diesel soot combustion catalysts under different experimental conditions, which simulate the situation found in a continuous regeneration technology trap (dual-bed configuration of catalyst and soot) or a catalyst-coated filter system (single-bed configuration, both catalyst and soot particles mixed under loose-contact mode). Under dual-bed configuration, the behavior of the catalysts towards soot combustion are very similar, despite the differences observed in the NO2 production profiles. However, under single-bed configuration, there are important differences in the soot combustion activities and in the NO2 slip profiles. The configurations chosen have an enormous impact on CO/(CO + CO2) ratios of combustion products as well. The most active catalyst under NOx + O2 is PrO2−x combining a high contribution of active oxygen-assisted soot combustion as well as high NO2 production activity along the catalytic bed.


Soot combustion NOx + O2 Ce0.8Zr0.2O2 PrO2−x SrTiCuO3 Pt-catalyst 



The authors gratefully acknowledge the financial support of Generalitat Valenciana (Prometeo/2009/047 project) and the Spanish Ministry of Science and Innovation (project CTQ2012-30703, which is co-funded by FEDER resources). N. G. H. wishes to thank Generalitat Valenciana her Ph.D. grant within VAL i+d Program.


  1. 1.
    Setiabudi A, Makkee A, Moulijn JA (2004) The role of NO2 and O2 in the accelerated combustion of soot in diesel exhausts gases. Appl Catal B 50:185–194CrossRefGoogle Scholar
  2. 2. Accessed 01 Apr 2013
  3. 3.
    van Setten BAAL, Makkee M, Moulijn JA (2001) Science and technology of catalytic particulate diesel filters. Catal Rev 43:489–565CrossRefGoogle Scholar
  4. 4.
    Fino D, Specchia V (2008) Open issues in oxidative catalysis for diesel particulate abatement. Powder Technol 180:64–73CrossRefGoogle Scholar
  5. 5.
    Atribak I, Bueno-López A, García-García A, Azambre B (2010) Contributions of surface and bulk heterogeneities to the NO oxidation activities of ceria–zirconia catalysts with composition Ce0.76Zr0.24O2 prepared by different methods. Phys Chem Chem Phys 12:13770–13779CrossRefGoogle Scholar
  6. 6.
    López-Suárez FE, Illán-López MJ, Bueno-López A, Anderson J (2011) NOx storage and reduction on a SrTiCuO3 perovskite catalyst studied by operando DRIFTS. Appl Catal B 104:261–267CrossRefGoogle Scholar
  7. 7.
    Bassou B, Guilhaume N, Lombaert K, Mirodatos C, Bianchi D (2010) Experimental microkinetic approach of the catalytic oxidation of diesel soot by ceria using temperature-programmed experiments. Part 1: impact and evolution of the ceria/soot contacts during soot oxidation. Energy Fuels 24:4766–4780CrossRefGoogle Scholar
  8. 8.
    Neeft JPA, van Pruissen OP, Makkee M, Moulijn JA (1997) Catalysts for the oxidation of soot from diesel exhaust gases II. Contact between soot and catalyst under practical conditions. Appl Catal B 12:21–31CrossRefGoogle Scholar
  9. 9.
    Atribak I, López-Suárez FE, Bueno-López A, García-García A (2011) New insights into the performance of ceria–zirconia mixed oxides as soot combustion catalysts. Identification of the role of “active oxygen” production. Catal Today 176:404–408CrossRefGoogle Scholar
  10. 10.
    Guillén-Hurtado N, Bueno-López A, García-García A (2012) Surface and structural characterisation of co-precipitated CexZr1−xO2 (0 ≤ x ≤ 1) mixed oxides. J Mater Sci 47:3204–3213CrossRefGoogle Scholar
  11. 11.
    López-Suárez FE, Parres-Esclapez S, Bueno-López A, Illán-Gómez MJ, Ura B, Trawczynski J (2009) Role of surface and lattice copper species in copper-containing (Mg/Sr)TiO3 perovskite catalysts for soot combustion. Appl Catal B 93:82–89CrossRefGoogle Scholar
  12. 12.
    Neeft JPA, Makkee M, Moulijn JA (1996) Metal oxides as catalysts for the oxidation of soot. Chem Eng J 64:295–302Google Scholar
  13. 13.
    de Rivas B, Guillén-Hurtado N, López-Fonseca R, Coloma-Pascual F, García-García A, Gutiérrez-Ortiz JI, Bueno-López A (2012) Activity, selectivity and stability of praseodymium-doped CeO2 for chlorinated VOCs catalytic combustion. Appl Catal B 121–122:162–170CrossRefGoogle Scholar
  14. 14.
    Krishna K, Bueno-López A, Makkee M, Moulijn JA (2007) Potential rare-earth modified CeO2 catalysts for soot oxidation: part III. Effect of dopant loading and calcination temperature on catalytic activity with O2 and NO + O2. Appl Catal B 75:210–220CrossRefGoogle Scholar
  15. 15.
    Kustov AL, Makkee M (2009) Application of NOx storage/release materials based on alkali-earth oxides supported on Al2O3 for high-temperature diesel soot oxidation. Appl Catal B 88:263–271CrossRefGoogle Scholar
  16. 16.
    Logan AD, Shelef M (1994) Oxygen availability in mixed cerium/praseodymium oxides and the effect of noble metals. J Mater Res 9:468–475CrossRefGoogle Scholar
  17. 17.
    Sinev MY, Graham GW, Haack LP, Shelef M (1996) Kinetic and structural studies of oxygen availability of the mixed oxides Pr1−xMxOy (M = Ce, Zr). J Mater Res 11:1960–1971CrossRefGoogle Scholar
  18. 18.
    Teraoka Y, Nakano K, Shangguan W, Kagawa S (1996) Simultaneous catalytic removal of nitrogen oxides and diesel soot particulate over perovskite-related oxides. Catal Today 27:107–113CrossRefGoogle Scholar
  19. 19.
    Teraoka Y, Kanada K, Kagawa S (2001) Synthesis of La–K–Mn–O perovskite-type oxides and their catalytic property for simultaneous removal of NOx and diesel soot particulates. Appl Catal B 34:73–78CrossRefGoogle Scholar
  20. 20.
    Fino D, Russo N, Saracco G, Specchia V (2003) The role of suprafacial oxygen in some perovskites for the catalytic combustion of soot. J Catal 217:367–375Google Scholar
  21. 21.
    van Setiabudi A, Setten BAL, Makkee M, Moulijn JA (2002) The influence of NOx on soot oxidation rate: molten salt versus platinum. Appl Catal B 35:159–166CrossRefGoogle Scholar
  22. 22.
    Setiabudi A, Makkee M, Moulijn JA (2003) An optimal NOx assisted abatement of diesel soot in an advanced catalytic filter design. Appl Catal B 42:35–45CrossRefGoogle Scholar
  23. 23.
    Yamashita H, Tomita A, Yamada H, Kyotani T, Radovic L (1993) Influence of char surface chemistry on the reduction of nitric oxide with chars. Energy Fuels 7:85–89CrossRefGoogle Scholar
  24. 24.
    García-García A, Illán-Gómez MJ, Linares-Solano A, Salinas-Martínez de Lecea C (1999) NOx reduction by potassium-containing coal briquettes. effect of NO2 concentration. Energy Fuels 13:499–505CrossRefGoogle Scholar
  25. 25.
    Mul G, Neeft JPA, Kapteijn F, Moulijn JA (1998) The formation of carbon surface oxygen complexes by oxygen and ozone. The effect of transition metal oxides. Carbon 36:1269–1276CrossRefGoogle Scholar
  26. 26.
    Tabor K, Gutzwiller L, Rossi MJ (1994) Heterogeneous chemical kinetics of NO2 on amorphous carbon at ambient temperature. J Phys Chem 98:6172–6186CrossRefGoogle Scholar
  27. 27.
    Azambre B, Collura S, Trichard JM, Weber J (2006) Nature and thermal stability of adsorbed intermediates formed during the reaction of diesel soot with nitrogen dioxide. Appl Surf Sci 253:2296–2303CrossRefGoogle Scholar
  28. 28.
    Azambre B, Collura S, Darcy P, Trichard JM, da Costa P, García-García A, Bueno-López A (2011) Effects of a Pt/Ce0.68Zr0.32O2 catalyst and NO2 on the kinetics of diesel soot oxidation from thermogravimetric analyses. Fuel Process Technol 92:363–371CrossRefGoogle Scholar
  29. 29.
    Du Z, Sarofim AF, Longwell JP (1991) NATO ASI series. In: Lahaye J, Ehrburger P (eds) Fundamental issues in control of carbon gasification reactivity. Cadarache, FranceGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  • Noelia Guillén-Hurtado
    • 1
  • Franz Edwin López-Suárez
    • 1
  • Agustín Bueno-López
    • 1
  • Avelina García-García
    • 1
  1. 1.MCMA Group, Department of Inorganic Chemistry, Faculty of SciencesUniversity of AlicanteAlicanteSpain

Personalised recommendations