Advertisement

Reaction Kinetics, Mechanisms and Catalysis

, Volume 111, Issue 1, pp 199–213 | Cite as

Effect the solvent evacuation mode on the catalytic properties of nickel-modified sulfated zirconia catalysts: n-hexane isomerization

  • N. Kamoun
  • M. K. Younes
  • A. Ghorbel
  • A. S. Mamede
  • A. Rives
Article

Abstract

This work studies the effect of the evacuation mode of the solvent to optimize the catalytic performances of sulfated zirconia doped with nickel prepared by the sol gel method in one step. Aerogel and xerogel catalysts exhibit different textural, structural and catalytic properties at various calcination temperatures. Aerogels, obtained by drying under supercritical conditions of solvent, exhibit a developed specific surface area and stabilize zirconia tetragonal phase before heating and even at high calcination temperature. However, xerogels obtained by ordinary drying in an oven are amorphous and has a low surface area and weak porosity. XPS spectroscopy shows that the nickel in aerogels is more reducible than those in xerogels. Aerogels exhibit higher activity than the xerogels, in the n-hexane isomerization reaction.

Keywords

Isomerization XPS Sol gel route Sulfated zirconia Nickel 

References

  1. 1.
    Hong Z, Fogash KB, Dumesic JA (1999) Catal Today 51:269CrossRefGoogle Scholar
  2. 2.
    Adeeva V, Dehaan JW, Janchen J, Lei GD, Schunemann V, Vandeven LJM, Sachtler WMH, Vansanten RA (1995) J Catal 151:364CrossRefGoogle Scholar
  3. 3.
    Subramaniam B, Arunajatesan V, Lyon CJ (1999) Catal Deactiv 126:63Google Scholar
  4. 4.
    Yang Y, Weng H (2009) J Mol Catal 304:65CrossRefGoogle Scholar
  5. 5.
    Urzhuntsev GA, Ovchinnikova EV, Chumachenko VA, Yashnik SA, Zaikovsky VI, Echevsky GV (2013) Chem Eng J. doi:  10.1016/j.cej.2013.08.092
  6. 6.
    Belskaya OB, Danilova IG, Kazakov MO, Gulyaeva TI, Kibis LS, Boronin AI, Lavrenov AV, Likholobov VA (2010) Appl Catal A 387:5–12CrossRefGoogle Scholar
  7. 7.
    Raissi S, Younes MK, Ghorbel A, Garin F (2009) J Sol–Gel Sci Technol. doi:  10.1007/s10971-009-2113-0
  8. 8.
    Blekkan EA, Johnsen KA, Løften T (2005) React Kinet Catal Lett 86(1):149–155CrossRefGoogle Scholar
  9. 9.
    Schmidt F (2001) Appl Catal A 221:15CrossRefGoogle Scholar
  10. 10.
    Ward DA, Ko EIF (1995) J Catal 157:321CrossRefGoogle Scholar
  11. 11.
    Armendariz H, Coq B, Tichit D, Dutartre R, Figueras F (1998) J Catal 173:345CrossRefGoogle Scholar
  12. 12.
    Bianchi CL, Ardizzone S, Cappelletti G (2004) Surf Interface Anal 36:745CrossRefGoogle Scholar
  13. 13.
    Vera CR, Pieck CL, Shimizu K, Parera JM (2002) Appl Catal A 230:137CrossRefGoogle Scholar
  14. 14.
    Platero EE, Mentruit MP, Arean CO, Zecchina A (1996) J Catal 162:268CrossRefGoogle Scholar
  15. 15.
    Barthos R, Lonyi F, Engelhardt J, Valyon J (2000) Top Catal 10:79CrossRefGoogle Scholar
  16. 16.
    Resofski G, Muhler M, Sprenger S, Wild U, Paal Z (2003) Appl Catal A 240:71CrossRefGoogle Scholar
  17. 17.
    Akkari R, Ghorbel A (2002) Stud Surf Sci Catal 143:1045CrossRefGoogle Scholar
  18. 18.
    Ward DA, Ko EI (1995) Ind Eng Chem Res 34:421CrossRefGoogle Scholar
  19. 19.
    Martin GA, Imelik B (1974) Surf Sci 42:157CrossRefGoogle Scholar
  20. 20.
    Pérez M, Armendariz H, Toledo JA, Vazquez A, Navarrete J, Montoya A, Garcia A (1999) J Mol Catal A 149:169CrossRefGoogle Scholar
  21. 21.
    Davis BH, Keogh RA, Srinivasan R (1994) Catal Today 20:219CrossRefGoogle Scholar
  22. 22.
    Mejri I, Younes MK, Ghorbel A (2006) J Sol–Gel Sci Technol 40(1):3CrossRefGoogle Scholar
  23. 23.
    Srinivasan R, Taulbee D, Davis BH (1991) Catal Lett 9:1CrossRefGoogle Scholar
  24. 24.
    Stefanic G, Didovic M, Music S (2007) J Mol Struct 435:834Google Scholar
  25. 25.
    Kamoun N, Younes MK, Ghorbel A, Mamede AS, Rives A (2012) J Porous Mater 19:375CrossRefGoogle Scholar
  26. 26.
    Garvie RC (1985) J Phys Chem 82:218CrossRefGoogle Scholar
  27. 27.
    IUPAC Recommendations (1994) Pure Appl Chem 66:1739CrossRefGoogle Scholar
  28. 28.
    Tzompantzi FJ, Manriquez ME, Padilla JM, Del Angel G, Gomez R, Mantilla A (2008) Catal Today 133–135:154CrossRefGoogle Scholar
  29. 29.
    Morterra C, Cerrato G, Signoretto M (1996) Catal Lett 36:129CrossRefGoogle Scholar
  30. 30.
    Yamagushi T, Tanabe K, Kung YC (1986) Mater Chem Phys 16:67CrossRefGoogle Scholar
  31. 31.
    Vaudagna SR, Comelli RA, Fígoli NS (1996) React Kinet Catal Lett 58(1):111–117CrossRefGoogle Scholar
  32. 32.
    Signoretto M, Pinna F, Strukul G, Chies P (1997) J Catal 167:522CrossRefGoogle Scholar
  33. 33.
    Babou F, Coudurier G, Vedrine JC (1995) J Catal 152:341CrossRefGoogle Scholar
  34. 34.
    Yamaguchi T, Jin T, Tanabe K (1986) J Phys Chem 90:3148CrossRefGoogle Scholar
  35. 35.
    Mishra MK, Tyagi B, Jasra RV (2003) Ind Eng Chem Res 42(23):5727CrossRefGoogle Scholar
  36. 36.
    Bensitel M, Sauer O, Lavelly JC, Morrow BA (1988) Mater Chem Phys 19:147CrossRefGoogle Scholar
  37. 37.
    Chackalackal S, Staffort FE (1966) J Am Chem Soc 88:723CrossRefGoogle Scholar
  38. 38.
    Castellon ER, Lopez AJ, Torres PM (2003) J Solid State Chem 175:159CrossRefGoogle Scholar
  39. 39.
    Barbara SK, Friederike CJ, Robert S (2005) J Catal 68:233Google Scholar
  40. 40.
    Scheffer B, Heijeinga JJ, Moulijn JA (1987) J Phys Chem 91:4752CrossRefGoogle Scholar
  41. 41.
    Lee KM, Lee WY (2002) Catal Lett 83:6Google Scholar
  42. 42.
    Kim SY, Goodwin JG, Hammache S, Auroux A, Galloway D (2001) J Catal 201:1CrossRefGoogle Scholar
  43. 43.
    Shibiao R, Jinheng Q, Chunyan W, Bolian X, Yining F, YiChin C (2007) J Catal 28(7):651Google Scholar
  44. 44.
    Morant C, Sanz JM, Galán L, Soriano L, Rueda F (1989) Surf Sci 218:331CrossRefGoogle Scholar
  45. 45.
    Kim P, Kim Y, Kim H, Song IK, Yi J (2004) J Mol Catal A 219:87CrossRefGoogle Scholar
  46. 46.
    Heracleous E, Lee AF, Wilson K, Lemonidou AA (2005) J Catal 231:159CrossRefGoogle Scholar
  47. 47.
    Wagner CD, Moulder JF, Davis LE, Riggs WM, Muilenburg GE Perking-Elmer corporation, Physical Electronics DivisionGoogle Scholar
  48. 48.
    Siriwardane RV, Poston JA Jr, Fisher EP, Shen MS, Miltz AL (1999) Appl Surf Sci 152:219CrossRefGoogle Scholar
  49. 49.
    Gaspar AB, Dieguez LC (2003) J Catal 220:309. doi: 10.1016/S0021-9517(03)00297-5 CrossRefGoogle Scholar
  50. 50.
    Hsu CY, Heimbush CR, Armes CT, Gates BC (1992) J Chem Soc Chem Commun 1645Google Scholar
  51. 51.
    Stichert W, Schüth F (1998) J Catal 174:242CrossRefGoogle Scholar
  52. 52.
    Belido AF, Ivanova AS, Pakhomov NA, Volodin AM (2000) J Mol Catal A 158:409CrossRefGoogle Scholar
  53. 53.
    Jentoft XGFC, Jentoft RE, Girgsdies F, Ressler T (2002) Catal Letter 81:25CrossRefGoogle Scholar
  54. 54.
    Ishida T, Yamaguchi T, Tanabe K (1988) Chem Lett 1869Google Scholar
  55. 55.
    Song SX, Kydd RA (1998) Catal Lett 51:95CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  • N. Kamoun
    • 1
  • M. K. Younes
    • 1
  • A. Ghorbel
    • 1
  • A. S. Mamede
    • 2
    • 3
  • A. Rives
    • 2
    • 4
  1. 1.Laboratoire de Chimie des Matériaux et Catalyse, Département de Chimie, Faculté des Sciences de TunisUniversité Tunis El ManarTunisTunisia
  2. 2.Unité de Catalyse et de Chimie du Solide UCCSUniversité Lille Nord de FranceLilleFrance
  3. 3.CNRS UMR 8181Ecole Nationale Supérieure de Chimie de LilleVilleneuve d’AscqFrance
  4. 4.CNRS UMR 8181Université Lille 1Villeneuve d’AscqFrance

Personalised recommendations