Reaction Kinetics, Mechanisms and Catalysis

, Volume 107, Issue 2, pp 467–475 | Cite as

Photocatalytic properties of PbMoO4 synthesized by a hydrothermal reaction

  • A. Martínez-de la Cruz
  • D. B. Hernández-Uresti
  • Leticia M. Torres-Martínez
  • S. W. Lee
Article

Abstract

PbMoO4 oxide with scheelite structure was obtained by hydrothermal synthesis in the absence of additives. The material was characterized by X-ray powder diffraction, scanning electron microscopy, diffuse reflectance spectroscopy, and adsorption–desorption N2 isotherms. The organic dyes rhodamine B (rhB), indigo carmine (IC), orange G (OG), and methyl orange (MO) were selected as molecules model to study its photocatalytic degradation over PbMoO4 oxide under UV irradiation. Total organic carbon analysis of samples irradiated revealed that mineralization of organic dyes by the action of PbMoO4 was feasible in 80 % (rhB), 69 % (IC), 71 % (MO), and 65 % (OG) after 96 h of UV irradiation.

Keywords

PbMoO4 Heterogeneous photocatalysis Hydrothermal synthesis Organic dyes 

References

  1. 1.
    Kubacka A, Fernández-García M, Colón G (2012) Chem Rev 112:1555–1614CrossRefGoogle Scholar
  2. 2.
    Bae S-T, Shin H, Lee S, Kim DW, Jung HS, Hong KS (2012) Reac Kinet Mech Cat 106:67–81CrossRefGoogle Scholar
  3. 3.
    Skalska K, Miller JS, Ledakowicz S (2010) Sci Total Environ 408:3976–3989CrossRefGoogle Scholar
  4. 4.
    Shana Z, Wang Y, Dingb H, Huang F (2009) J Mol Catal A Chem 302:54–58CrossRefGoogle Scholar
  5. 5.
    Pontes FM, Maurera MAMA, Souza AG, Longo E, Leite ER, Magnani R, Machado MAC, Pizani PS, Varela JA (2003) J Eur Ceram Soc 23:3001–3007CrossRefGoogle Scholar
  6. 6.
    Liu J, Ma J, Lin B, Ren Y, Jiang X, Tao J, Zhu X (2008) Ceram Int 34:1557–1560CrossRefGoogle Scholar
  7. 7.
    Sczancoski JC, Cavalcante LS, Joya MR, Varela JA, Pizani PS, Longo E (2008) Chem Eng J 140:632–637CrossRefGoogle Scholar
  8. 8.
    Kudo A, Steinberg M, Bard AJ, Campion A, Fox MA, Mallouk TE, Webber SE, White JM (1990) Catal Lett 5:61–66CrossRefGoogle Scholar
  9. 9.
    Bi J, Wu L, Zhang Y, Li Z, Li J, Fu X (2009) Appl Catal B Environ 91:135–143CrossRefGoogle Scholar
  10. 10.
    Anandakumar VM, Abdul Khadar M (2009) Mater Sci Eng A 519:141–146CrossRefGoogle Scholar
  11. 11.
    Sczancoski JC, Bomio MDR, Cavalcante LS, Joya MR, Pizani PS, Varela JA, Longo E, Li MS, Andre’s JA (2009) J Phys Chem C 113:5812–5822CrossRefGoogle Scholar
  12. 12.
    Phuruangrat A, Thongtem T, Thongtem S (2009) J Cryst Growth 311:4076–4081CrossRefGoogle Scholar
  13. 13.
    Phuruangrat A, Thongtem T, Thongtem S (2010) Curr Appl Phys 10:342–345CrossRefGoogle Scholar
  14. 14.
    Hernández-Uresti DB, Martínez-de la Cruz A, Torres-Martínez LM (2012) Res Chem Intermed 38:817–828CrossRefGoogle Scholar
  15. 15.
    Martínez-de la Cruz A, Obregón Alfaro S, López Cuéllar E, Ortiz Méndez U (2007) Catal Today 129:194–199CrossRefGoogle Scholar
  16. 16.
    Thongtem T, Phuruangrat A, Thongtem S (2008) Curr Appl Phys 8:189–197CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  • A. Martínez-de la Cruz
    • 1
  • D. B. Hernández-Uresti
    • 1
  • Leticia M. Torres-Martínez
    • 2
  • S. W. Lee
    • 3
  1. 1.Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, Ciudad UniversitariaSan Nicolás de los GarzaMexico
  2. 2.Departamento de Ecomateriales y EnergíaFacultad de Ingeniería Civil (UANL)San Nicolás de los GarzaMexico
  3. 3.Department of Materials EngineeringSun Moon UniversityAsanSouth Korea

Personalised recommendations