Reaction Kinetics, Mechanisms and Catalysis

, Volume 107, Issue 1, pp 157–165 | Cite as

Synthesis, characterization and catalytic performance of binary CeO2–MgO oxides in the dehydrogenation of ethylbenzene

  • Van-Khoa Nguyen
  • Jung-Hyun Park
  • Chae-Ho ShinEmail author


Binary CeO2–MgO oxides with various Ce/Mg mol ratios were prepared by the co-precipitation method and were tested in the dehydrogenation of ethylbenzene to styrene. The obtained materials were characterized by N2 adsorption, X-ray diffraction, and X-ray photoelectron spectroscopy. The N2 adsorption showed that CeO2–MgO oxides were mesoporous materials and the BET surface area increased with increasing magnesia content. The fluorite type structure of ceria was observed in samples with low magnesia content while the mixture of the ceria phase and the magnesia phase existed simultaneously in samples with high magnesia content. The results showed that the Ce4+–Mg2+–O2− couple in CeO2/MgO catalyst could be supposed to be an active site in the dehydrogenation of ethylbenzene.


Ethylbenzene Dehydrogenation Styrene CeO2–MgO 


  1. 1.
    Cavani F, Trifiro F (1995) Appl Catal A 133:219–239CrossRefGoogle Scholar
  2. 2.
    Kano Y, Ohshima M, Kurokawa H, Miura H (2010) Reac Kinet Mech Catal 100:79–83Google Scholar
  3. 3.
    Kotarba A, Bieniasz W, Kustrowski P, Stadnicka K, Sojka Z (2012) Appl Catal A 407:100–105Google Scholar
  4. 4.
    Li Z, Shanks BH (2009) Appl Catal A 354:50–56CrossRefGoogle Scholar
  5. 5.
    Dulamita N, Maicaneanu A, Sayle DC, Stanca M, Craciun R, Olea M, Afloroaei C, Fodor A (2005) Appl Catal A 287:9–18CrossRefGoogle Scholar
  6. 6.
    Rao KN, Reddy BM, Abhishek B, Seo YH, Jiang N, Park SE (2009) Appl Catal B 91:649–656CrossRefGoogle Scholar
  7. 7.
    Aneggi E, Leitenburg C, Trovarelli A (2012) Catal Today 181:108–115CrossRefGoogle Scholar
  8. 8.
    Kim KH, Ihm SK (2011) J Hazard Mater 186:16–34CrossRefGoogle Scholar
  9. 9.
    Colussi S, Trovarelli A, Cristiani C, Lietti L, Groppi G (2012) Catal Today 180:124–130CrossRefGoogle Scholar
  10. 10.
    Martins RC, Amaral-Silva N, Quinta-Ferreira RM (2010) Appl Catal B 99:135–144CrossRefGoogle Scholar
  11. 11.
    Edwin Ntainjua N, Garcia T, Solsona B, Taylor SH (2008) Catal Today 137:373–378CrossRefGoogle Scholar
  12. 12.
    Wang Z, Qu Z, Quan X, Wang H (2012) Appl Catal A 411–412:131–138Google Scholar
  13. 13.
    Cao H, Song W, Gong M, Wang J, Yan S, Liu Z, Chen Y (2009) J Nat Gas Chem 18:83–87CrossRefGoogle Scholar
  14. 14.
    Liotta LF, Di Carlo G, Pantaleo G, Deganello G (2007) Appl Catal B 70:314–322CrossRefGoogle Scholar
  15. 15.
    Bhagat SD, Kim YH, Yi G, Ahn YS, Yeo JG, Choi YT (2008) Micropor Mesopor Mat 108:333–339CrossRefGoogle Scholar
  16. 16.
    Ardizzone A, Bianchi CL, Fadoni M, Vercelli B (1997) Appl Surf Sci 119:253–259CrossRefGoogle Scholar
  17. 17.
    Swiatowska J, Lair V, Pereira-Nabais C, Cote G, Marcus P, Chagnes A (2011) Appl Surf Sci 257:9110–9119CrossRefGoogle Scholar
  18. 18.
    Burroughs P, Hamnett A, Orchard AF, Thornton G (1976) J Chem Soc Dalton Trans 17:1686–1698CrossRefGoogle Scholar
  19. 19.
    Lykhach Y, Staudt T, Streber R, Lorenz MPA, Bayer A, Steinrück HP, Libuda JY (2010) Eur Phys J B 75(1):89–100CrossRefGoogle Scholar
  20. 20.
    Fang J, Bi X, Si D, Jiang Z, Huang W (2007) Appl Surf Sci 253(22):8952–8961CrossRefGoogle Scholar
  21. 21.
    Hirano T (1986) Appl Catal 28:119–132CrossRefGoogle Scholar
  22. 22.
    Weiss W, Schlogl R (2000) Top Catal 13:75–90CrossRefGoogle Scholar
  23. 23.
    Tope BB, Balasamy RJ, Khurshid A, Atanda LA, Yahiro H, Shishido T, Takehira K, Sulaiman SA (2011) Appl Catal A 407:118–126CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  1. 1.Department of Chemical EngineeringChungbuk National UniversityCheongjuRepublic of Korea

Personalised recommendations