Reaction Kinetics, Mechanisms and Catalysis

, Volume 103, Issue 1, pp 239–250 | Cite as

Photodegradation of malachite green in water solutions by means of thin films of TiO2/WO3 under visible light

  • A. Bojinova
  • C. DushkinEmail author


Nanocomposite thin films of TiO2/WO3 are prepared by the sol–gel method on glass substrates using a dip-coating technique. The initial precursors of composite sols are chloride salts of the respective metals dissolved in ethanol with the addition of hydrogen peroxide as a catalyst of the hydrolysis and sol stabilization. The WO3 content in the films is selected to be 5 or 10%. The film thickness is controlled by the number of coating cycles. The films are dried between the successive coatings and finally annealed at 520 °C in air for 2 h. The morphology and phase composition of the composite films is characterized by SEM/EDX and X-ray analysis. The photocatalytic action of the films is tested with respect to the degradation of malachite green in water solutions under UV and visible light irradiation. The composite films TiO2/WO3 with 10% of WO3 always exhibit a better photocatalytic activity than the pure TiO2 films even under strong visible light.


Sol–gel process Dip coating TiO2/WO3 films Visible light photocatalysis 



This research is financially supported by the project NATO SfP 982835 and DO 02-252 of the National Science Fund of Bulgaria (NSFB). C.D. is thankful also to COST D-43 Action of EC and project DO 02-82 UNION of NSFB.

Supplementary material

11144_2011_295_MOESM1_ESM.doc (1 mb)
(DOC 1037 kb)


  1. 1.
    Fujishima A, Zhang X, Truck D (2007) Int J Hydrogen Energy 32:2664CrossRefGoogle Scholar
  2. 2.
    Rehman S, Ullah R, Butt AM, Gohar ND (2009) J Hazard Mater 170:560CrossRefGoogle Scholar
  3. 3.
    Chatterjee D, Dasgupta S (2005) J Photochem Photobiol C 6:186CrossRefGoogle Scholar
  4. 4.
    Fujishima A, Zhang X, Tryk DA (2008) Surface Sci Rep 63:515CrossRefGoogle Scholar
  5. 5.
    Serpone N, Borgarello E, Gratzel M (1984) J Chem Soc Chem Commun 6:342CrossRefGoogle Scholar
  6. 6.
    Lo SC, Lin CF, Wu CH, Hsieh PH (2004) J Hazard Mater 114:183CrossRefGoogle Scholar
  7. 7.
    Ho W, Yu JC (2006) J Mol Catal A 247:268CrossRefGoogle Scholar
  8. 8.
    Bessekhouad Y, Robert D, Weber JV (2004) J Photochem Photobiol A 163:569CrossRefGoogle Scholar
  9. 9.
    Wu L, Yu JC, Fua X (2006) J Mol Catal A 244:25CrossRefGoogle Scholar
  10. 10.
    Zorn ME, Tompkins DT, Zeltner WA, Anderson MA (1999) Appl Catal B 23:1CrossRefGoogle Scholar
  11. 11.
    Hernández-Alonso MD, Tejedor-Tejedor I, Coronado JM, Soria J, Anderson MA (2006) Thin Solid Films 502:125CrossRefGoogle Scholar
  12. 12.
    Jianhua L, Rong Y, Songmei L (2006) Rare Met 25:636CrossRefGoogle Scholar
  13. 13.
    Stoyanov S, Mladenova D, Dushkin C (2006) React Kinet Catal Lett 88:277CrossRefGoogle Scholar
  14. 14.
    Rampaul A, Parkin IP, O’Neill SA, DeSouza J, Mills A, Elliott N (2003) Polyhedron 22:35CrossRefGoogle Scholar
  15. 15.
    Puddu V, Mokaya R, Li Puma G (2007) Chem Commun 1Google Scholar
  16. 16.
    Bojinova AS, Papazova CI, Karadjova IB, Poulios I (2008) Eurasian J Anal Chem 2:34Google Scholar
  17. 17.
    Kubacka A, Fernández-García M, Colón G (2008) J Catal 254:272CrossRefGoogle Scholar
  18. 18.
    Lorret O, Francova D, Waldner G, Stelzer N (2009) Appl Catal B 91:39CrossRefGoogle Scholar
  19. 19.
    Srivastava S, Sinha R, Roy D (2004) Aquat Toxicol 66:319CrossRefGoogle Scholar
  20. 20.
    Bergwerff A, Scherpenisse P (2003) J Chromatogr B 788:351CrossRefGoogle Scholar
  21. 21.
    Culp S, Blankenship L, Kussewitt D, Doerge D, Mulligan L, Beland F (1999) Cemico-Biol Interact 122:153CrossRefGoogle Scholar
  22. 22.
    Safaric I, Safarikova M (2002) Water Res 36:196CrossRefGoogle Scholar
  23. 23.
    Bojinova A, Dushkin C, Eliyas A, Stoyanova-Eliyas E (2010) SIZEMAT2—September 19–21. Nessebar, Bulgaria, FOP13Google Scholar
  24. 24.
    Bojinova A, Dushkin C (2009) In: Balabanova E, Dragieva I (eds) Nanoscience & nanotechnology, vol 9, Heron Press, Sofia, p 84Google Scholar
  25. 25.
    Pecquenard B, Lecacheux H, Livage J, Julien C (1998) J Solid State Chem 135:159CrossRefGoogle Scholar
  26. 26.
    Muhlebach J, Muller K, Schwarzenbach G (1970) Inorg Chem 9:2381CrossRefGoogle Scholar
  27. 27.
    Dushkin C, Stoyanov S, Bojinova A, Russev S (2006) Ann Univ Sof Fac Chim 98–99:73Google Scholar
  28. 28.
    Bojinova A, Kralchevska R, Poulios I, Dushkin C (2007) Mater Chem Phys 106:187CrossRefGoogle Scholar
  29. 29.
    Kostadinov M, Georgiev P, Bojinova A, Dushkin C (2003) In: Balabanova E, Dragieva I (eds) Nanoscience and nanotechnology, vol 3, Heron Press, Sofia, p 207Google Scholar
  30. 30.
    Choi W, Ko JY, Park H, Chung JS (2001) Appl Catal B 31:209CrossRefGoogle Scholar
  31. 31.
    Kajitvichyanukul P, Ananpattarachai J, Pongpom S (2005) Sci Technol Adv Mater 6:352CrossRefGoogle Scholar
  32. 32.
    Církva V, Žabová H, Hájek M (2008) J Photochem Photobiol A 198:13CrossRefGoogle Scholar
  33. 33.
    Quici N, Vera ML, Choi H, Puma GL, Dionysiou D, Litter M, Destaillats H (2010) Appl Catal B 95:312CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  1. 1.Laboratory of Nanoparticle Science and Technology, Department of General and Inorganic Chemistry, Faculty of ChemistryUniversity of SofiaSofiaBulgaria

Personalised recommendations