Reaction Kinetics, Mechanisms and Catalysis

, Volume 102, Issue 2, pp 487–500 | Cite as

Effect of sulfatation on the physicochemical and catalytic properties of molecular sieves

  • Cleanio L. Lima
  • Hélvio S. A. de Sousa
  • Santiago J. S. Vasconcelos
  • Josué M. Filho
  • Alcemira C. Oliveira
  • Francisco F. de Sousa
  • Alcineia C. OliveiraEmail author


Sulfated molecular sieves were synthesized and characterized by XRD, FTIR, chemical analyses, acidity measurements and N2 adsorption–desorption isotherms. Sulfatation led to structural changes in the solid framework by increasing the acidity and accessibility of the acid sites. Brønsted and Lewis acid sites of mild to high strength improved the conversion of alcohols, but the selectivity was modest over sulfated FAU type Y, ZSM-5 and γ-Al2O3 solids at temperatures lower than 200 °C. The characteristics of the sulfated AlSBA-15 molecular sieve in terms of acidity, textural properties and accessibility possibly make this solid useful for catalytic reactions involving bulky organic compounds.


Sulfatation Molecular sieves Characterization Catalysts 



This work was supported by the FUNCAP with contract 0011-00206.01.00/09. We also acknowledge FUNCAP for H.S.A.S. scholarship. S. J. S. V and C.L.L gratefully acknowledge to Cnpq for their scholarship (CNPq Process no 574194/2008-8).


  1. 1.
    Bouchet F, Fujisawa H, Kato M, Yamaguchi T (1994) In: Weitkamp J, Karge HG, Pfeifer H, Hölderich W (eds) Studies in surface science and catalysis, vol 84. Elsevier, AmsterdamGoogle Scholar
  2. 2.
    Corma A (1995) Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions. Chem Rev 95:559–614CrossRefGoogle Scholar
  3. 3.
    Patel A, Coudurier C, Essayem N, Védrine JC (1997) Effect of the addition of Sn to zirconia on the acidic properties of the sulfated mixed oxide. J Chem Soc Faraday Trans 93:347–353CrossRefGoogle Scholar
  4. 4.
    Oliveira AC, Essayem N, Tuel A, Clacens J-M, Taârit YB (2006) Acid and superacid solids for the transformation of n-butane. React Kinet Catal Lett 89:123–129CrossRefGoogle Scholar
  5. 5.
    Oliveira AC, Essayem N, Tuel A, Clacens J-M, Taârit YB (2008) Comparative study of transformation of linear alkanes over modified mordenites and sulphated zirconia catalysts: Influence of the zeolite acidity on the performance of n-butane isomerization. J Mol Catal A Chem 239:31–38CrossRefGoogle Scholar
  6. 6.
    Oliveira AC, Essayem N, Tuel A, Clacens J-M, Taârit YB (2008) Acidic, physico–chemical and catalytic properties of MCM-41 containing transitions metals. Stud Surf Sci Catal 174:1239–1242CrossRefGoogle Scholar
  7. 7.
    Chai S-H, Wang HP, Liang Y, Xu B-Q (2009) Sustainable production of acrolein: preparation and characterization of zirconia-supported 12-tungstophosphoric acid catalyst for gas-phase dehydration of glycerol. Appl Catal A Gen 353:213–222CrossRefGoogle Scholar
  8. 8.
    Molochnikov LS, Kovaleva EG, Golovkina EL, Kirilyuk IA, Grigor’ev IA (2007) Spin probe study of acidity of inorganic materials. Colloid J 69:769–776CrossRefGoogle Scholar
  9. 9.
    Ichiura H, Okamura N, Kitaoka T, Tanaka H (2001) Preparation of zeolite sheet using a papermaking technique Part II The strength of zeolite sheet and its hygroscopic characteristics. J Mater Sci 36:4921–4926CrossRefGoogle Scholar
  10. 10.
    Chai S-H, Wang H-P, Liang Y, Xu B-Q (2008) Sustainable production of acrolein: gas-phase dehydration of glycerol over 12-tungstophosphoric acid supported on ZrO2 and SiO2. Green Chem 10:1087–1093CrossRefGoogle Scholar
  11. 11.
    Kim ND, Oh S, Joo BJ, Jung KS, Yi J (2010) Effect of preparation method on structure and catalytic activity of Cr-promoted Cu catalyst in glycerol hydrogenolysis Kor. J Chem Eng 27:431–434Google Scholar
  12. 12.
    Suprun W, Lutecki M, Haber T, Paap H (2009) J Mol Catal A Chem 309:71CrossRefGoogle Scholar
  13. 13.
    Zhou C-H, Beltramini JN, Fan YX, Lu CQ (2008) Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals. Chem Soc Rev 37:527–549CrossRefGoogle Scholar
  14. 14.
    Yu W, Zhao J, Ma H, Miao H, Song A, Xu J (2010) Aqueous hydrogenolysis of glycerol over Ni–Ce/AC catalyst: promoting effect of Ce on catalytic performance. Appl Catal A Gen 383:73–78CrossRefGoogle Scholar
  15. 15.
    de Oliveira AS, Vasconcelos SJ, de Sousa JR, de Sousa FF, Filho JM, Oliveira AC (2010) Catalytic conversion of glycerol to acrolein over modified molecular sieves: activity and deactivation studies.Chem Eng J 83:970–977 doi: 10.1016/j.cej.2010.09.029 Google Scholar
  16. 16.
    Ning L, Ding Y, Chen W, Gong L, Lin R, Yuan L, Xin Q (2008) Glycerol dehydration to acrolein over activated carbon-supported silicotungstic acids. Chin J Catal 29:212–214CrossRefGoogle Scholar
  17. 17.
    Jia CJ, Liu Y, Schmidt W, Lu AN, Schüth F (2010) Small-sized HZSM-5 zeolite as highly active catalyst for gas phase dehydration of glycerol to acrolein. J Catal 269:71–79CrossRefGoogle Scholar
  18. 18.
    Katryniok B, Paul S, Capron N, Dumeignil F (2009) Towards the sustainable production of acrolein by glycerol. ChemSusChem 2:719–730CrossRefGoogle Scholar
  19. 19.
    Kinage AK, Upare PP, Kasinathan P, Hwang YK, Chang J-S (2010) Selective conversion of glycerol to acetol over sodium-doped metal oxide catalysts. Catal Comm 11:620–623CrossRefGoogle Scholar
  20. 20.
    Sato S, Akiyama M, Takahashi R, Hara T, Inui K, Yolota M (2008) Vapor-phase reaction of polyols over copper catalysts. Appl Catal A Gen 347:186–191CrossRefGoogle Scholar
  21. 21.
    Mbaraka IK, Shanks BH (2006) Acid strength variation due to spatial location of organosulfonic acid groups on mesoporous silica. J Catal 244:78–85CrossRefGoogle Scholar
  22. 22.
    Pecharroman C, Sobrados I, Iglesia JE, Gonzalez-Careño T, Sang J (1999) Thermal evolution of transitional aluminas followed by NMR and IR spectroscopies. J Phys Chem B 103:6160–6170CrossRefGoogle Scholar
  23. 23.
    Bosnar S, Kosanović C, Subotić B, Bosnar D, Kajcsos Z, Liszkay L, Lohonyai L, Major P, Molnár B, Lázár K (2008) The influence of alkali cations on the structure of zeolite precursor gels investigated by positron lifetime spectroscopy. Stud Surf Sci Catal 174:793CrossRefGoogle Scholar
  24. 24.
    Yori JC, Grau JM, Benítez VM, Sepúlveda J (2005) Hydroisomerization-cracking of n-octane on heteropolyacid H3PW12O40 supported on ZrO2, SiO2 and carbon: effect of Pt incorporation on catalyst performance. Appl Catal A Gen 286:71–78CrossRefGoogle Scholar
  25. 25.
    Atia H, Armbruster U, Martin A (2008) Dehydration of glycerol in gas phase using heteropolyacid catalysts as active compounds. J Catal 258:71–82CrossRefGoogle Scholar
  26. 26.
    Lercher JA, Jentys A (2002) In: Schutz F, Sing KSW, Weitkamp J (eds) Handbook of porous solids. Wiley-VCH, WeinheimGoogle Scholar
  27. 27.
    Dresselhaus MS, Dresselhaus G, Saito R, Jorio A (2005) Electron-phonon matrix elements in single-wall carbon nanotubes. Phys Rep 409:47CrossRefGoogle Scholar
  28. 28.
    Pinheiro AL, Pinheiro AN, Valentini A, Mendes Filho J, de Sousa FF, de Sousa JR, Rocha MGC, Bargiela P, Oliveira AC (2009) Analysis of coke deposition and study of the structural features of MAl2O4 catalysts for the dry reforming of methane. Catal Comm 11:11–14CrossRefGoogle Scholar
  29. 29.
    Alhanash A, Kozhevnikova EF, Kozhevnikov IV (2010) Gas-phase dehydration of glycerol to acrolein catalysed by caesium heteropoly salt. Appl Catal A Gen 378:11–18CrossRefGoogle Scholar
  30. 30.
    Clacens J-M, Poilloux Y, Barrault J (2002) Selective etherification of glycerol to polyglycerols over impregnated basic MCM-41 type mesoporous catalysts. Appl Catal 227:181–190CrossRefGoogle Scholar
  31. 31.
    Kim YT, Jung K-D, Duck PE, Gas-phase dehydration of glycerol over ZSM-5 catalysts (2010) Microporous Mesoporous Mater 131:28–36CrossRefGoogle Scholar
  32. 32.
    Dalai AK, Sethuraman R, Sai PR, Katikaneni RO (1998) Synthesis and characterization of sulfated Titania solid acid catalysts. Ind Eng Chem Res 37:3869–3878CrossRefGoogle Scholar
  33. 33.
    Meher LC, Gopinath R, Naik SN, Dalai AK (2009) Catalytic hydrogenolysis of glycerol to propylene glycol over mixed oxides derived from a hydrotalcite-type precursor. Ind Chem Eng Res 48:1080–1846CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  • Cleanio L. Lima
    • 1
  • Hélvio S. A. de Sousa
    • 2
  • Santiago J. S. Vasconcelos
    • 2
  • Josué M. Filho
    • 1
  • Alcemira C. Oliveira
    • 2
  • Francisco F. de Sousa
    • 2
    • 3
  • Alcineia C. Oliveira
    • 1
    Email author
  1. 1.Departamento de FísicaUniversidade Federal do CearáFortalezaBrazil
  2. 2.Departamento de Físico-Química e Química AnalíticaUniversidade Federal do CearáFortalezaBrazil
  3. 3.Universidade Federal do ParáMarabáBrazil

Personalised recommendations