Advertisement

Reaction Kinetics and Catalysis Letters

, Volume 96, Issue 2, pp 245–262 | Cite as

Ab initio study on alkyl radical decomposition and alkyl radical addition to olefins

  • Béla Viskolcz
  • László Seres
Article

Abstract

The β bond dissociation of alkyl radicals and their reverse reactions, the addition of alkyl radicals to olefins were studied by G3MP2 level of theory to obtain a consistent kinetic data set. Both reaction families can be classified depending on the type of radical formed by β bond scission, namely the CH3, primary, secondary tertiary radical formed. The kinetics of the reaction classes were described by only a limited number of Arrhenius parameters. The unified A factor of 1013.7 s−1 was found for all β bond dissociations. The Arrhenius activation energies are 125, 121, 113 and 103 kJ mol−1, for methyl, primary, secondary, and tertiary radicals, respectively. The activation energies of 32, 25 and 18 kJ mol−1 are calculated for the terminal addition of primary (including methyl), secondary, and tertiary radicals to olefins, respectively. The biologically important nonterminal radical additions to olefins have higher barriers of 37, 31 and 35 kJ mol−1, respectively. At room temperature both strongly exothermic additions can compete with H-atom abstraction.

New groups for Benson’s group additivity rules were defined to describe activation parameters for the β bond dissociation reactions. The group values were calculated by using the ab initio heats of formation of transition state structures.

Keywords

β-bond dissociation thermochemistry activation energy activation entropy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.P. Zeppieri, S.D. Klotz, F.L. Dryer, F. Battin-Leclerc, P. Dagaut, J. Griffiths, H. Hippler, C.P. Westbrook: Combust Inst. 2, 28, 1587 (2000).CrossRefGoogle Scholar
  2. 2.
    H. Fischer, L. Radom: Angew. Chem. Int. Ed., 40, 1340 (2001).CrossRefGoogle Scholar
  3. 3.
    M.W. Wong, L. Radom: J. Phys. Chem. A, 102, 2237 (1998).CrossRefGoogle Scholar
  4. 4.
    H. Hippler, B. Viskolcz: Phys. Chem. Chem. Phys., 4, 4663 (2002).CrossRefGoogle Scholar
  5. 5.
    R. Sumathi, H.H. Cartensen, W.H. Green, Jr.: J. Phys. Chem. A, 105, 6910 (2002).CrossRefGoogle Scholar
  6. 6.
    R. Gomez-Balderas, M.L. Coote, D.J. Henry: J. Phys. Chem. A, 107, 6082 (2003)CrossRefGoogle Scholar
  7. 7.
    V. Van Speybroeck, D. Van Neck, M. Waroquier, S. Wauters, M. Saeys, G.B. Marin: J. Phys. Chem. A, 104, 10939 (2000).CrossRefGoogle Scholar
  8. 8.
    V. Van Speybroeck, D. Van Neck, M. Waroquier, S. Wauters, M. Saeys, G.B. Marin: Int. J. Quantum Chem., 91, 384 (2003)CrossRefGoogle Scholar
  9. 9.
    B. Viskolcz, G. Lendvay, T. Kortvelyesi, L. Seres: J. Am. Chem. Soc., 118, 3006 (1996).CrossRefGoogle Scholar
  10. 10.
    B. Viskolcz, Gy. Lendvay, L. Seres: J. Phys. Chem. A., 101, 7119 (1997).CrossRefGoogle Scholar
  11. 11.
    J.R. Barker, N.F. Ortiz: Int. J. Chem. Kinet., 33, 246 (2001).CrossRefGoogle Scholar
  12. 12.
    I. Marsi, B. Viskolcz, L. Seres: J. Phys. Chem. A, 104 (2000).Google Scholar
  13. 13.
    J.P. Senosiain, J.H. Han, C.B. Musgrave, D.M. Golden: Faraday Discuss, 119, 173(2001).CrossRefGoogle Scholar
  14. 14.
    H.D.J. Parkinson, C.J.L. Radom: J. Phys. Chem. A, 106, 7927 (2002).CrossRefGoogle Scholar
  15. 15.
    H.D.J. Sullivan MB, L. Radom: J. Chem. Phys., 118, 4849 (2003).CrossRefGoogle Scholar
  16. 16.
    F.O. Rice, R.E. Varnerin: J. Am. Chem. Soc., 77, 221 (1955).CrossRefGoogle Scholar
  17. 17.
    D.L. Baulch, C.J. Cobos, R.A. Cox, C. Esser, P. Frank, Th. Just, J.A. Kerr, M.J. Pilling, J. Troe, R.W. Walker, J. Warnatz: J. Phys. Chem. Ref. Data, 21, 411 (1992).Google Scholar
  18. 18.
    D.L. Baulch, C.J. Cobos, R.A. Cox, P. Frank, G. Hayman, Th. Just, J.A. Kerr, T. Murrells, M.J. Pilling, J. Troe, R.W. Walker, J. Warnatz: J. Phys. Chem. Ref. Data, 23, 847 (1994).Google Scholar
  19. 19.
    A.C. Kinsman, J.M. Roscoe: Int. J. Chem. Kinet., 26, 191 (1994).CrossRefGoogle Scholar
  20. 20.
    R.J. Cvetanovic, R.S. Irwin: J. Chem. Phys., 46, 1694 (1967)CrossRefGoogle Scholar
  21. 21.
    L. Szirovicza, F. Marta: Int. J. Chem. Kinet., 8, 897 1976.CrossRefGoogle Scholar
  22. 22.
    A.C. Kinsman, J.M. Roscoe: Int. J. Chem. Kinet., 26, 191 (1994).CrossRefGoogle Scholar
  23. 23.
    R.R. Baldwin, A. Keen, R.W.J. Walker: Chem. Soc. Faraday Trans., 2: 83, 759 (1987).CrossRefGoogle Scholar
  24. 24.
    J. Warnatz: “Combustion Chemistry”, (Ed. W.C. Gardiner Jr.,) Springer-Verlag, New York (1984).Google Scholar
  25. 25.
    W.J. Tsang: Phys. Chem. Ref. Data, 20, 221 (1991).CrossRefGoogle Scholar
  26. 26.
    L. Seres, A. Nacsa, N.L. Arthur: Int. J. Chem. Kinet., 26, 227 (1994).CrossRefGoogle Scholar
  27. 27.
    F.E. Imbert, R.M. Marshall: Int. J. Chem. Kinet., 81, 19 (1987).Google Scholar
  28. 28.
    M. Szőri, C. Fittschen, I.G. Csizmadia, B. Viskolcz: J. Chem. Comp. Theory, 2, 1575(2006).CrossRefGoogle Scholar
  29. 29.
    K.W. Watkins, D.R. Lawson: J. Phys. Chem., 75, 1632 (1971).CrossRefGoogle Scholar
  30. 30.
    A. Dombi, E. Bozo, P. Huhn: Magy. Kem. Foly., 91, 177 (1985).Google Scholar
  31. 31.
    L. Seres, R. Fischer, K. Scherzer, M. Gorgenyi:. J. Chem. Soc. Faraday Trans., 91, 1303(1995).CrossRefGoogle Scholar
  32. 32.
    K.W. Watkins, L.A. O’Deen: J. Phys. Chem., 73, 4094 (1969).CrossRefGoogle Scholar
  33. 33.
    N. Yamauchi, A. Miyoshi, K. Kosaka, M. Koshi, H. Matsui; J. Phys. Chem. A, 103, 2723(1999).CrossRefGoogle Scholar
  34. 34.
    Ch. Fittschen, H. Hippler, B. Viskolcz: Phys. Chem. Chem. Phys., 2, 1677 (2000).CrossRefGoogle Scholar
  35. 35.
    L.A. Curtiss, K. Raghavachari, P.C. Redfern, V. Rassolov, J.A. Pople: J. Chem. Phys., 109, 7764 (1998).CrossRefGoogle Scholar
  36. 36.
    G.A. Baboul, L.A. Curtiss, P.C. Redfern, K. Raghavachari: J. Chem. Phys., 110, 7650(1999).CrossRefGoogle Scholar
  37. 37.
    A.D. Becke: J. Chem. Phys., 101, 5648 (1993).CrossRefGoogle Scholar
  38. 38.
    A. Schaefer, H. Horn, R. Ahlrichs: J. Chem. Phys., 97, 2571 (1992).CrossRefGoogle Scholar
  39. 39.
    R. Ahlrichs: private communicationGoogle Scholar
  40. 40.
    03. Gaussian, C.02. Revision, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr. T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda,. O. Kitao, H. Nakai, M. Klene, X. Li, J.E Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople: Gaussian, Inc., Wallingford CT, 2004.Google Scholar
  41. 41.
    V.D. Knyazev, I.R. Slagle: J. Phys. Chem., 100, 5318 (1996).CrossRefGoogle Scholar
  42. 42.
    H. Hippler, B. Viskolcz: Phys. Chem. Chem. Phys., 2, 3591 (2000).CrossRefGoogle Scholar
  43. 43.
    S.W. Benson: Thermochemical Kinetics, 2 nd Ed. John Wiley & Sons, New York (1976).Google Scholar
  44. 44.
    L.A. Curtiss, K. Raghavachari, P.C. Redfern, J.A. Pople: J. Chem. Phys., 106, 1063(1997).CrossRefGoogle Scholar
  45. 45.
    N. Cohen, S. Benson: The thermochemistry of alkanes and cycloalkanes, in: The chemistry of alkanes and cycloalkanes, (Eds S. Patai and Z. Rappoport), Chapter 6, p. 259. John Wiley & Sons, New York (1992).Google Scholar
  46. 46.
    N. Cohen, S.W. Benson: Chem. Rev., 93, 2419 (1993).CrossRefGoogle Scholar
  47. 47.
    N. Cohen: J. Phys. Chem. Ref. Data, 25, 1411 (1996).Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  1. 1.Department of Chemical Informatics, Faculty of EducationUniversity of SzegedSzegedHungary

Personalised recommendations