Reaction Kinetics and Catalysis Letters

, Volume 92, Issue 2, pp 257–266 | Cite as

The role of pyrrhotite (Fe7S8) and the sample texture in the hydrothermal transformation of pentlandite ((Fe,Ni)9S8) to violarite ((Ni,Fe)3S4)

  • Fang Xia
  • Jinwen Zhou
  • Allan Pring
  • Yung Ngothai
  • Brian O’Neill
  • Joël Brugger
  • Guorong Chen
  • Chris Colby
Article

Abstract

The catalytic role of pyrrhotite (Fe7S8) in the reaction kinetics of the hydrothermal transformation of pentlandite ((Fe,Ni)9S8) to violarite ((FeNi2S4) was found to depend on the physical form of pyrrhotite. Pyrrhotite in fine scale intergrown with pentlandite boosts the reaction, whereas in a mechanical mixture of pyrrhotite and pentlandite, it plays the opposite role. This phenomenon was interpreted as result of dissolution of pyrrhotite under reaction conditions.

Keywords

Pentlandite violarite replacement reaction pyrrhotite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Pring, J. Brugger: Aust. J. Mineral. 11, 3 (2005).Google Scholar
  2. 2.
    S. Hem: Chem. Geol., 225, 291 (2006).CrossRefGoogle Scholar
  3. 3.
    B. Etschmann, A. Pring, A. Putnis, B. A. Grguric, A. Studer: Am. Mineral., 89, 39 (2004).Google Scholar
  4. 4.
    C.A. Francis, M.E. Fleet, K. Misra, J.R. Craig: Am. Mineral, 61, 913 (1976).Google Scholar
  5. 5.
    C. Tenailleau, B. Etschmann, R.M. Ibberson, A. Pring: Am. Mineral., 91, 1442 (2006).CrossRefGoogle Scholar
  6. 6.
    B.A. Grguric: Mineral. Mag., 66, 313 (2002).CrossRefGoogle Scholar
  7. 7.
    A.C. Chamberlain, J.G. Dunn: Thermochim. Acta, 341, 367 (1999).CrossRefGoogle Scholar
  8. 8.
    T.E. Warner, N.M. Rice, N. Taylor: Hydrometallurgy, 41, 107 (1996).CrossRefGoogle Scholar
  9. 9.
    C. Tenailleau, A. Pring, B. Etschmann, J. Brugger, B.A. Grguric, A. Putnis: Am. Mineral., 91, 706 (2006).CrossRefGoogle Scholar
  10. 10.
    F. Xia, G. Chen, A. Pring, J. Brugger, Y. Ngothai, B. O’Neill, C. Colby, C. Tenailleau, H. Wang, Y. Yang: Acta Geol. Sin., (in press).Google Scholar
  11. 11.
    F. Xia, A. Pring, Y. Ngothai, B. O’Neill, J. Brugger, G. Chen, C. Colby: Chemica 2007, 23–26 Sept., 2007, Melbourne, Australia.Google Scholar
  12. 12.
    V. A. Drebushchak, T.A. Kravchenko, V.S. Pavlyuchenko: J. Cryst. Growth, 193, 728 (1998).CrossRefGoogle Scholar
  13. 13.
    M. Avrami: J Chem. Phys., 7, 1103 (1939).CrossRefGoogle Scholar
  14. 14.
    M. Avrami: J Chem. Phys., 8, 212 (1940).CrossRefGoogle Scholar
  15. 15.
    B.A. Hunter: (IUCr)Commission on Powder Diffraction Newsletter, 20, 21 (1998).Google Scholar
  16. 16.
    A. Putnis, C.V. Putnis: J. Solid State Chem., 180, 1783 (2007).CrossRefGoogle Scholar
  17. 17.
    A. Putnis: Mineral. Mag., 66, 689 (2002).CrossRefGoogle Scholar
  18. 18.
    K.C. Misra, M. E. Fleet: Econ. Geol., 69, 391 (1974).Google Scholar
  19. 19.
    E.H. Nickel, J.R. Ross, N.R. Thornber: Econ. Geol., 69, 93 (1974).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2007

Authors and Affiliations

  • Fang Xia
    • 1
  • Jinwen Zhou
    • 2
  • Allan Pring
    • 2
  • Yung Ngothai
    • 1
  • Brian O’Neill
    • 1
  • Joël Brugger
    • 2
  • Guorong Chen
    • 3
  • Chris Colby
    • 1
  1. 1.School of Chemical EngineeringUniversity of AdelaideAdelaideAustralia
  2. 2.Department of MineralogySouth Australian Museum North TerraceAdelaideAustralia
  3. 3.Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and EngineeringEast China University of Science and TechnologyShanghaiChina

Personalised recommendations