Advertisement

Radiophysics and Quantum Electronics

, Volume 62, Issue 6, pp 385–394 | Cite as

Relationship Between the Polar Electrojet Dynamics and the Amplitude of ELF/VLF Signal from the Ionospheric Source in the Modulated Ionospheric Heating Experiment

  • A. V. LarchenkoEmail author
  • O. M. Lebed’
  • N. F. Blagoveshchenskaya
  • S. V. Pilgaev
  • E. B. Beketova
  • Yu. V. Fedorenko
Article
  • 4 Downloads

We consider the results of the experiment on the polar ionosphere heating by a high-power modulated HF wave conducted by the AARI at the EISCAT/heating facility in October 2016. The data on joint processing of the values of the equivalent polar electrojet current above the heated ionosphere region retrieved by the IMAGE network of ground-based stations and the amplitudes of a signal of the horizontal component of the magnetic field from an ionospheric source at the modulation frequency recorded in the PGI network of high-latitude stations are presented. The events with a strong positive correlation between the magnetic field amplitude variations and the polar electrojet current variations are considered. It is shown that if the direction of the current changes from eastward to northward, correlation between the current variations and magnetic field variations almost disappears at a modulation frequency of 3017 Hz. Temporal and spatial variations of the coefficient of linear regression of the amplitude of the horizontal magnetic-field component with respect to the electrojet current are analyzed. In the transition from day to night, which is accompanied by the electrojet current decrease, the regression slope increases, and it decreases with increasing distance between the heater and the observation point.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. G. Getmantsev, N. A. Zuikov, D. S. Kotik, et al., JETP Lett., 20, No. 4, 101 (1974).ADSGoogle Scholar
  2. 2.
    D. S. Kotik and V. Yu. Trakhtengerts, JETP Lett., 21, No. 2. 51 (1975).Google Scholar
  3. 3.
    R. A. Greenwald, W. Weiss, E. Nielsen, et al., Radio Sci., 13, No. 6, 1021 (1978).ADSCrossRefGoogle Scholar
  4. 4.
    E. Nielsen, M. Bruns, I. Pardowitz, et al., Geophys. Res. Lett., 26, No. 1, 21 (1999).ADSCrossRefGoogle Scholar
  5. 5.
    https://www.eiscat.se/eiscat3d.Google Scholar
  6. 6.
    Y. Kamide, A. D. Richmond, and S. Matsushita, J. Geophys. Res., 86, No. A2, 801 (1982).ADSCrossRefGoogle Scholar
  7. 7.
    G. V. Haines, Comp. Geosci., 14, No. 4, 413 (1988).CrossRefGoogle Scholar
  8. 8.
    O. Amm and A. Viljanen, Earth Planets Space, 51, No. 6, 431 (1999).ADSCrossRefGoogle Scholar
  9. 9.
    A. Pulkkinen, O. Amm, and A. Viljanen, J. Geophys. Res., 108, No. A2, 1053 (2003).CrossRefGoogle Scholar
  10. 10.
    J. A. Fejer, J. Atmos. Terr. Phys., 32, No. 4, 597 (1970).ADSCrossRefGoogle Scholar
  11. 11.
    D. B. Newman and A. J. Ferraro, J. Geophys. Res., 81, No. 13, 2442 (1976).ADSCrossRefGoogle Scholar
  12. 12.
    J. D. Mathews, J. K. Breakall, and S. Ganguly, J. Geophys. Res., 44, No. 5, 441 (1982).Google Scholar
  13. 13.
    I. N. Kapustin, R. A. Pertsovsky, A. N. Vasiliev, et al., JETP Lett., 25, No. 5, 228 (1977).ADSGoogle Scholar
  14. 14.
    M. T. Rietveld, H. Kopka, E. Nielsen, et al., J. Geophys. Res., 88, No. A3, 2140 (1983).ADSCrossRefGoogle Scholar
  15. 15.
    M. T. Rietveld, H.-P. Mauelshagen, P. Stubbe, et al., J. Geophys. Res., 92, No. A8, 8707 (1987).ADSCrossRefGoogle Scholar
  16. 16.
    G. Jin, M. Spasojevic, and U. S. Inan, J. Geophys. Res., 114, No. A8, A08301 (2009).ADSCrossRefGoogle Scholar
  17. 17.
    E. I. Tanskanen, J. Geophys. Res., 114, No. A5, A05204 (2009).ADSCrossRefGoogle Scholar
  18. 18.
    O. M. Lebed’, Yu. V. Fedorenko, N. F. Blagoveshchenskaya, et al., Geomag. Aeron., 57, No. 6, 698 (2017).CrossRefGoogle Scholar
  19. 19.
    N. G. Lehtinen and U. S. Inan, J. Geophys. Res., 113, No. A6, A06301 (2008).ADSCrossRefGoogle Scholar
  20. 20.
    A. V. Larchenko, O. M. Leved’, and Yu. V. Fedorenko, J. Commun. Tech. Electron., 60, No. 8, 829 (2015).CrossRefGoogle Scholar
  21. 21.
    S. V. Pilgaev, A. V. Larchenko, M. V. Filatov, et al., Trudy Kolsk. Nauch. Tsentra RAN, 32, No. 6, 113 (2015).Google Scholar
  22. 22.
    S. V. Pilgaev, A. V. Larchenko, M. V. Filatov, et al., Instr. Exp. Tech., 61, No. 6, 809 (2018).CrossRefGoogle Scholar
  23. 23.
    T. Korja, M. Engels, and A. A. Zhamaletdinov, Earth Planets Space, 54, No. 5, 535 (2002).ADSCrossRefGoogle Scholar
  24. 24.
    Yu. Fedorenko, E. Tereshchenko, S. Pilgaev, et al., Radio Sci., 49, No. 12, 254 (2014).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. V. Larchenko
    • 1
    Email author
  • O. M. Lebed’
    • 1
  • N. F. Blagoveshchenskaya
    • 2
  • S. V. Pilgaev
    • 1
  • E. B. Beketova
    • 3
  • Yu. V. Fedorenko
    • 1
  1. 1.Polar Geophysical InstituteApatityRussia
  2. 2.Arctic and Antarctic Research InstituteSt. PetersburgRussia
  3. 3.Apatity Branch of the Murmansk Arctic State UniversityApatityRussia

Personalised recommendations