Advertisement

Radiophysics and Quantum Electronics

, Volume 62, Issue 5, pp 361–368 | Cite as

Extreme Probabilistic Characteristics of the Measurement Disambiguation in Multiscale Phase-Measuring Systems

  • D. V. Dubinin
  • V. P. Denisov
  • A. A. MescheryakovEmail author
Article
  • 2 Downloads

We determine the upper limit on the correct measurement disambiguation probability in multiscale phase-measuring systems in which all scales are ambiguous. The measured value is estimated by the maximum likelihood method from the total of measured phase differences supplemented by an algorithm for rejecting (erasing) measurement results with anomalously large errors. Errors that exceed one-half of the main lobe of the likelihood function are considered anormalously large. The results are obtained by the methods of linear algebra with a geometric interpretation of the measurement disambiguation process in the space of total phase differences. The method was applied to phase direction finders, but can easily be adapted to other types of multiscale phase radio systems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. E. Lipsky, Microwave Passive Direction Finding, SciTech Publishing, Inc., Raleigh, USA (2004).Google Scholar
  2. 2.
    M. I. Skolnik, ed., Radar Handbook McGrow Hill, New York, (2008).Google Scholar
  3. 3.
    V. P. Denisov and D. V. Dubinin, Phase Radio Direction Finders [in Russian], Tomsk State University of Control Systems and Radio Electronics, Tomsk (2002).Google Scholar
  4. 4.
    V. P. Denisov, Izv. Vyssh. Uchebn. Zaved., Radioélektron., 20, No. 7, 63 (1977).Google Scholar
  5. 5.
    V. I. Belov, Radiotekhnika Élektron., 23, No. 10, 2225 (1978).Google Scholar
  6. 6.
    V. I. Belov, Radiotekhnika Élektron., 23, No. 8, 1657 (1978).Google Scholar
  7. 7.
    V. I. Belov, Radiotekhnika Élektron., 35, No. 8, 1642 (1990).Google Scholar
  8. 8.
    S. Verhagen and P. Teunissen, Guidance, Control, Dynamics, 29, No. 4, 981 (2006).ADSCrossRefGoogle Scholar
  9. 9.
    P. Teunissen, Wuhan University J. Natural Sci., 8, No. 2, 471 (2003).MathSciNetCrossRefGoogle Scholar
  10. 10.
    I. E. Kinkul’kin, Global Navigation Satellite Systems. Consumer’s Equipment Operation Algorithms [in Russian], Radiotekhnika, Moscow (2018).Google Scholar
  11. 11.
    V. P. Denisov, D. V. Dubinin, and V. V. Slastion, J. Commun. Tech. Electron., 45, No. 3, 301 (2000).Google Scholar
  12. 12.
    V. P. Denisov, N. A. Kolyadin, K. E. Mukhomor, and M. P. Skorodumov, Radiotekhnika, No. 2, 10 (2013).Google Scholar
  13. 13.
    V. P. Denisov, D. V. Dubinin, and A. A. Mescheryakov, J. Commun. Tech. Electron., 61, No. 10, 1095 (2016).CrossRefGoogle Scholar
  14. 14.
    V. P. Denisov, D. V. Dubinin, and A. A. Meshcheryakov, Russian Phys. J., 60, No. 10, 1719 (2017).ADSCrossRefGoogle Scholar
  15. 15.
    A. D. Aleksandrov, Convex Polyhedra [in Russian], GITTL, Moscow (1950).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • D. V. Dubinin
    • 1
  • V. P. Denisov
    • 1
  • A. A. Mescheryakov
    • 1
    Email author
  1. 1.Tomsk State University of Control Systems and Radio ElectronicsTomskRussia

Personalised recommendations