Radiophysics and Quantum Electronics

, Volume 62, Issue 5, pp 342–347 | Cite as

Energy Spectra of Electron Beams and the Possibility of Double-Stage Energy Recuperation in a Double-Beam Terahertz Gyrotron

  • M. Yu. Glyavin
  • V. Yu. Zaslavsky
  • I. V. Zotova
  • V. N. Manuilov
  • A. P. FokinEmail author

We study theoretically the possibilities of double-stage energy recuperation in a double-beam terahertz gyrotron. Numerical modeling, which was performed for a gyrotron producing radiation with a frequency of 0.78 THz and operating at the second cyclotron-frequency harmonic at the TE8.5 mode, demonstrates the possibility of spatial and energy separation of electron beams. This makes it possible to implement a double-stage recuperation scheme. The found energy spectra of electrons suggest an increase in the gyrotron efficiency by 3.5–4 times.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Ghann and J. Uddin, in: J. Uddin, ed., Terahertz (THz) Spectroscopy: A Cutting-Edge Technology, Rijeka (2017), p. 3.Google Scholar
  2. 2.
    Q. Sun, Y. He, K. Liu, et al., Quant. Imaging Med. Surg., 7, 3, 345 (2017).CrossRefGoogle Scholar
  3. 3.
    A. Luukanen, R. Appleby, M. Kemp, and N. Salmon, in: Terahertz Spectroscopy and Imaging. Springer Series in Optical Sciences, Springer, Berlin (2012), p. 491.CrossRefGoogle Scholar
  4. 4.
    G. S. Nusinovich, M. K. A. Thumm, and M. I. Petelin, J. Infrared, Millimeter, Terahertz Waves, 35, 4, 325 (2014).CrossRefGoogle Scholar
  5. 5.
    M. Yu. Glyavin, G. G. Denisov, V. E. Zapevalov, et al., J. Commun. Tech. Electron., 59, No. 8, 792 (2014).CrossRefGoogle Scholar
  6. 6.
    N. Kumar, U. Singh, A. Bera, and A. K. Sinha, Infrared Phys. Technol., 76, 38 (2016).ADSCrossRefGoogle Scholar
  7. 7.
    A. Fokin, M. Glyavin, G. Golubiatnikov, et al., Sci. Rep., 8, No. 1, 4317 (2018).ADSCrossRefGoogle Scholar
  8. 8.
    A. E. Fedotov, R. M. Rozental, I. V. Zotova, et al., J. Infrared, Millimeter, Terahertz Waves, 39, No. 10, 975 (2018).CrossRefGoogle Scholar
  9. 9.
    V. L. Bratman, A. A. Bogdashov, G. G. Denisov, et al., J. Infrared, Millimeter, Terahertz Waves, 33, No. 7, 715 (2012).CrossRefGoogle Scholar
  10. 10.
    M. E. Read, W.G. Lawson, A. J. Dudas, and A. Singh, IEEE Trans. Electron Dev., 37, No. 6, 1579 (1990).ADSCrossRefGoogle Scholar
  11. 11.
    V. N. Manuilov, M. V. Morozkin, O. I. Luksha, and M. Yu. Glyavin, Infrared Phys. Technol., 91, 46 (2018).ADSCrossRefGoogle Scholar
  12. 12.
    K. Sakamoto, M. Tsuneoka, A. Kasugai, et al., Phys. Rev. Lett., 73, No. 26, 3532 (1994).ADSCrossRefGoogle Scholar
  13. 13.
    M. K. Thumm, B. Piosczyk, and G. Ling, IEEE Trans. Plasma Sci., 28, No. 3, 606 (2000).ADSCrossRefGoogle Scholar
  14. 14.
    V. E. Zapevalov and Sh. E. Tsimring, Radiophys. Quantum Electron., 33, No. 11, 954 (1990).ADSCrossRefGoogle Scholar
  15. 15.
    V. N. Manuilov, M. Y. Glyavin, A. S. Sedov, et al., J. Infrared, Millimeter, Terahertz Waves, 36, No. 12, 1164 (2015).CrossRefGoogle Scholar
  16. 16.
    T. Idehara, M. Glyavin, A. Kuleshov, et al., Rev. Sci. Instrum., 88, No. 9, 094708 (2017).ADSCrossRefGoogle Scholar
  17. 17.
    V. E. Zapevalov, V. N. Manuilov, O. V. Malygin, and Sh. E. Tsimring, Radiophys. Quantum Electron., 37, No. 3, 237 (1994).ADSCrossRefGoogle Scholar
  18. 18.
    N. S. Ginzburg, M. Yu. Glyavin, A. M. Malkin, et al., IEEE Trans. Plasma Sci., 44, No. 8, 1303 (2016).Google Scholar
  19. 19.
    G. S. Nusinovich, Introduction to the Physics of Gyrotrons, The Johns Hopkins University Press, Baltimore (2004).Google Scholar
  20. 20.
    A. L. Goldenberg, V. N. Manuilov, M. A. Moiseev, and N. A. Zavolsky, Int. J. Infrared Millimeter Waves, 18, No. 1, 43 (1997).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • M. Yu. Glyavin
    • 1
  • V. Yu. Zaslavsky
    • 1
  • I. V. Zotova
    • 1
  • V. N. Manuilov
    • 1
  • A. P. Fokin
    • 1
    Email author
  1. 1.Institute of Applied Physics of the Russian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations