Advertisement

Radiophysics and Quantum Electronics

, Volume 62, Issue 5, pp 311–325 | Cite as

Influence of Horizontal Ionosphere Nonuniformity on the Spatial Distribution of Ultralow-Frequency Magnetic Fields from Ground-Based Sources

  • E. N. ErmakovaEmail author
  • A. V. Pershin
  • A. V. Ryabov
  • A.V. Schennikov
  • A.D. Akchurin
Article
  • 1 Downloads

A significant difference was found in the amplitude and polarization spectra of ULF magnetic noise at stations with a base of 120 km during periods of absence of regional thunderstorm activity. A simultaneous analysis of low-frequency data and ionosonde data allowed us to conclude that the difference in the main parameters of the polarization spectrum at two stations is due to the appearance of sporadic Es layers having a nonuniform horizontal intensity distribution with characteristic scales of the order of the base between stations. A difference in the depth of variations in the polarization parameter ε was also found during the ionosphere recovery after magnetic storms. It could be related with Es layers, which had not only a nonuniform intensity distribution, but were also located at different altitudes. A difference was found in the frequency scales of the spectral resonance structure during recording of time variations of its fundamental frequencies. Numerical calculations of the parameter ε with specifying model Es layers and electron-density profiles corrected at the altitudes of the ionospheric F layer adequately explained the observed difference in the magnetic noise spectra and allowed us to determine the altitudes at which the horizontal ionospheric irregularity existed. The studies were carried out on the basis of records of horizontal magnetic components at Radiophysical Research Institute midlatitude observatories Novaya Zhizn (56° N, 45.74° E) and Staraya Pustyn (55.66° N, 43.63° E, 120 km east of the first reception point).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.V.Polyakov, B. I. Reznikov, Yu.V. Shlyugaev, and Yu.A. Kopytenko, Radiophys. Quantum Electron., 49, No. 12, 937 (2006).ADSCrossRefGoogle Scholar
  2. 2.
    S.V.Polyakov, A.V. Shchennikov, and Z. Tang, Radiophys. Quantum Electron., 57, No. 7, 498 (2014).ADSCrossRefGoogle Scholar
  3. 3.
    P.P. Belyaev, S.V. Polyakov, V.O. Rapoport, and V.Yu.Trakhtengerts, Sov. Phys. Dokl., 32, 983 (1987).ADSGoogle Scholar
  4. 4.
    P.P. Belyaev, S.V. Polyakov, V.O. Rapoport, and V.Yu.Trakhtengerts, Radiophys. Quantum Electron., 32, No. 7, 594 (1989).ADSCrossRefGoogle Scholar
  5. 5.
    T. Bösinger, C. Haldoupis, P.P. Belyaev, et al., J. Geophys. Res. A, 107, No. 10, 1281 (2002).ADSCrossRefGoogle Scholar
  6. 6.
    E. N. Ermakova, S.V.Polyakov, and N.V. Semenova, Radiophys. Quantum Electron., 54, No. 12, 796 (2011).ADSCrossRefGoogle Scholar
  7. 7.
    P. P. Belyaev, S.V. Polyakov, E.N. Ermakova, et al., Radiophys. Quantum Electron., 45, No. 2, 135 (2002).CrossRefGoogle Scholar
  8. 8.
    E. N. Ermakova, D. S. Kotik, S.V.Polyakov, and A.V. Shchennikov, Radiophys. Quantum Electron., 50, No. 7, 555 (2007).ADSCrossRefGoogle Scholar
  9. 9.
    J. E. Titheridge, J. Atmos. Sol. Terr. Phys., 65, No. 9, 1035 (2003).ADSCrossRefGoogle Scholar
  10. 10.
    E. N. Ermakova, D. S. Kotik, A.V.Pershin, et al., Radiophys. Quantum Electron., 55, Nos. 10–11, 605 (2012).ADSGoogle Scholar
  11. 11.
    E. N. Ermakova, D. S. Kotik, A.V.Ryabov, and A.A.Panyutin, Radiophys. Quantum Electron., 57, No. 11, 782 (2014).ADSCrossRefGoogle Scholar
  12. 12.
    T. Bösinger and S. L. Shalimov, Ann. Geophysicae, 22, 1 (2004).Google Scholar
  13. 13.
    T. Bösinger, A. G. Demekhov, E. N. Ermakova, et al., J. Geophys. Res. Space Phys., 119, No. 5, 4109 (2014).ADSCrossRefGoogle Scholar
  14. 14.
    E. N. Ermakova, D. S. Kotik, A.V.Pershin, et al., Radiophys. Quantum Electron., 59, No. 12, 947 (2016).ADSCrossRefGoogle Scholar
  15. 15.
    E. N. Ermakova, D. S. Kotik, and S. V. Polyakov, Radiophys. Quantum Electron., 51, No. 7, 519 (2008).ADSCrossRefGoogle Scholar
  16. 16.
    T. Bösinger, E. N. Ermakova, C. Haldoupis, and D. S. Kotik, Ann. Geophysicae, 27, 1313 (2009).ADSCrossRefGoogle Scholar
  17. 17.
    V. V. Kirillov and V. N. Kopeikin, Radiophys. Quantum Electron., 46, No. 1, 1 (2003).ADSCrossRefGoogle Scholar
  18. 18.
  19. 19.
  20. 20.
    E. Fedorov, N. Mazur, V. Pilipenko, and L. Baddeley, J. Geophys. Res. Space Phys., 121, No. 11, 11282 (2016).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • E. N. Ermakova
    • 1
    Email author
  • A. V. Pershin
    • 1
  • A. V. Ryabov
    • 1
  • A.V. Schennikov
    • 1
  • A.D. Akchurin
    • 2
  1. 1.Radiophysical Research Institute of N. I. Lobachevsky State University of Nizhny NovgorodNizhny NovgorodRussia
  2. 2.Kazan (Volga) Federal UniversityKazanRussia

Personalised recommendations