Advertisement

Method for Studying the Dynamics of Fast Frequency Sweeping Events in the Spectra of Non-Thermal Electromagnetic Plasma Emission

  • M. E. Viktorov
  • S. D. Ilichev
Article
  • 1 Downloads

We developed an algorithm for processing of the dynamic spectra of plasma emission, which makes it possible to extract chirped elements with both increasing and decreasing frequencies. The algorithm was tested on a set of experimental data obtained by studying the emission spectra of the rarefied plasma of an electron cyclotron resonant discharge in an open magnetic trap. The efficiency of the method is close to 100% for signals with a signal-to-noise ratio of more than 30 dB and about 50% with a signal-to-noise ratio of 20 dB. This method can be used for automated analysis of dynamic emission spectra of both laboratory and space plasmas.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Y. Trakhtengerts, J. Geophys. Res.: Space Phys., 100, No. A9, 17205 (1995).ADSCrossRefGoogle Scholar
  2. 2.
    V. Y. Trakhtengerts, Ann. Geophys., 17, No. 1, 95 (1999).ADSCrossRefGoogle Scholar
  3. 3.
    W. Li, R. M. Thorne, J. Bortnik, Y. Y. Shprits, et al., Geophys. Res. Lett., 38, No. 14, L14103 (2011).ADSCrossRefGoogle Scholar
  4. 4.
    V. Yu. Trakhtengerts and M. J. Rycroft, Whistler and Alfven Mode Cyclotron Masers in Space, Cambridge University Press, New York (2008).CrossRefGoogle Scholar
  5. 5.
    E. Macúšová, O. Santolík, P. Décréau, et al., J. Geophys. Res.: Space Phys., 115, No. A12, A12257 (2010).ADSCrossRefGoogle Scholar
  6. 6.
    E. Titova, A. Demekhov, B. Kozelov, et al., J. Geophys. Res.: Space Phys., 117, No. A8, A08210 (2012).ADSCrossRefGoogle Scholar
  7. 7.
    B. N. Breizman and S. E. Sharapov, Plasma Phys. Control. Fusion, 53, No. 5, 054001 (2011).ADSCrossRefGoogle Scholar
  8. 8.
    S. E. Sharapov, B. Alper, H. L. Berk, et al., Nucl. Fusion, 53, No. 10, 104022 (2013).ADSCrossRefGoogle Scholar
  9. 9.
    H. L. Berk, B. N. Breizman, and N. V. Petviashvili, Phys. Lett. A, 234, No. 3, 213 (1997).ADSCrossRefGoogle Scholar
  10. 10.
    M. E. Viktorov, A. G. Shalashov, D. A. Mansfeld, and S. V. Golubev, Europhys. Lett., 116, No. 10, 55001 (2016).ADSCrossRefGoogle Scholar
  11. 11.
    A. G. Shalashov, E. D. Gospodchikov, and M. E. Viktorov, Plasma Phys. Control. Fusion, 61, No. 8, 085020 (2019).ADSCrossRefGoogle Scholar
  12. 12.
    O. Santolík, E. Macúšová, E. Titova, et al., Ann. Geophys., 26, No. 6, 1665 (2008).ADSCrossRefGoogle Scholar
  13. 13.
    A. V. Larchenko, A. G. Demekhov, and B. V. Kozelov, in: Trudy Kolskogo Nauch. Tsentra RAN, Ser. Geliogeofizika [in Russian] (2017), No. 3, p. 47.Google Scholar
  14. 14.
    A. V. Larchenko, A. G. Demekhov, and B. V. Kozelov, Izv. Vyssh. Uchebn. Zaved., Radiofiz., 61, No. 3, 177 (2019).Google Scholar
  15. 15.
    A. G. Shalashov, M. E. Viktorov, D. A. Mansfeld, and S. V. Golubev, Phys. Plasmas, 24, No. 3, 032111 (2017).ADSCrossRefGoogle Scholar
  16. 16.
    A. V. Vodopianov, S. V. Golubev, A. E. Demekhov, et al., Plasma Phys. Rep., 31, 927 (2005).ADSCrossRefGoogle Scholar
  17. 17.
    M. E. Viktorov, A. G. Shalashov, E. D. Gospodchikov, et al., in: Proc. of 45th European Physical Society Conf. Plasma Physics, Prague, 2–6 July 2018, Vol. 42A, 101.Google Scholar
  18. 18.
    T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, MIT Press and McGraw-Hill, London (2009).zbMATHGoogle Scholar
  19. 19.
    A. G. Demekhov, Radiophys. Quantum Electron., 59, No. 10, 773 (2016).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • M. E. Viktorov
    • 1
    • 2
  • S. D. Ilichev
    • 1
    • 2
  1. 1.Institute of Applied Physics of the Russian Academy of SciencesNizhny NovgorodRussia
  2. 2.Higher School for EconomicsMoscowRussia

Personalised recommendations