Advertisement

Radiophysics and Quantum Electronics

, Volume 62, Issue 2, pp 99–107 | Cite as

On Stereophotogrammetry of a Perturbed Sea Surface

  • V. L. WeberEmail author
  • L. S. Dolin
Article
  • 10 Downloads

We consider models of the formation of a spatio-angular brightness distribution of the light scattered from profiled rough surfaces and mirror surfaces under natural illumination conditions. The developed analytical model of the sea surface stereophotogrammetry is based on the analysis of relationships for space and angle derivatives of the brightness of the recorded light field of the sky, which is reflected by the surface.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. N. Lobanov, Photogrammetry [in Russian], Nedra, Moscow (1984).Google Scholar
  2. 2.
    A. I. Obiralov, A.N. Limonov, and N. A. Gavrilova, Photogrammetry and Remote Sensing [in Russian], Koloss, Moscow (2006).Google Scholar
  3. 3.
    A. S. Nazarov, Photogrammetry [in Russian], TetraSistems, Moscow (2006).Google Scholar
  4. 4.
    Z. I.Gur’eva, K. M. Petrov, and V. V. Sharkov, Geological-Geomorphological Studies of Sea Shelves and Shores Using Aerial Photography Materials [in Russian], Nauka, Leningrad (1968).Google Scholar
  5. 5.
    N. A. Valyus, Stereoscopy [in Russian], USSR Acad. Sci. Publ., Moscow (1962).Google Scholar
  6. 6.
    V. I. Vlasenko, Technology of Three-Dimensional Photography [in Russian], Iskusstvo, Moscow (1978).Google Scholar
  7. 7.
    B.K. P. Horn, Robot Vision, MIT Press, Cambridge, Ma. (1986).Google Scholar
  8. 8.
    I. N. Davidan, L. I. Lopatukhin, and V. A. Rozhkov, Wind Waves as a Probabilistic Hydrodynamic Process [in Russian], Gidrometeoizdat, Leningrad (1978).Google Scholar
  9. 9.
    I. N. Davidan, L. I. Lopatukhin, and V. A. Rozhkov, Wind Waves in the World Ocean [in Russian], Gidrometeoizdat, Leningrad (1985).Google Scholar
  10. 10.
    A.T.Gurgenidze, Yu.A.Trapeznikov, S.A.Rumyantseva, et al., in: I.N.Davidan, et., Theoretical Fundamentals and Methods of Calculation of Wind Waves [in Russian], Gidrometeoizdat, Leningrad (1988).Google Scholar
  11. 11.
    M. L. Banner, S.F. Jones Ian, J. S. Trinder, J. Fluid Mech., 198, 321 (1989).ADSCrossRefGoogle Scholar
  12. 12.
    M. V. Kosnik and V.A.Dulov, Meas. Aci. Technol., 22, 1 (2011).Google Scholar
  13. 13.
    A. S. Mironov, M. V. Yurovskaya, V.A.Dulov, et al., J. Geophys. Res., 117, C00J35 (2012).CrossRefGoogle Scholar
  14. 14.
    M. V. Yurovskaya, V. A. Dulov, B. Charpon, and V. N. Kudryavtsev, J. Geophys. Res., 118, 4380 (2013).ADSCrossRefGoogle Scholar
  15. 15.
    V. L. Weber, Radiophys. Quantum Electron., 60, No. 4, 309 (2017).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Applied Physics of the Russian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations