Advertisement

Radiophysics and Quantum Electronics

, Volume 62, Issue 2, pp 85–98 | Cite as

Features of the HF Signal Propagation on Oblique Sounding Paths During Solar and Magnetic Activity in September 2017

  • V. P. Uryadov
  • F. I. VybornovEmail author
  • A. V. Pershin
Article
  • 10 Downloads

We present the results of studying the influence of solar and magnetic activity in September 2017 on the HF signal characteristics on subauroral and midlatitude paths. A connection between the ionospheric effects caused by the magnetic storm and the magnetic disturbance intensity is established. It is shown that the formation of a strong sporadic Es layer in the auroral ionosphere during a magnetic storm makes it possible to use the propagation mode with reflection from Es in the interests of HF communication to neutralize the effects of the negative phase of the storm and absorption growth when unfavorable conditions for the F-mode propagation with reflection from the upper ionosphere occur.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B.E. Bryunelli and A.A.Namgaladze, Physics of the Ionosphere [in Russian], Nauka, Moscow (1988).Google Scholar
  2. 2.
    F.T. Berkey, V. M. Driatsky, K. Henriksen, et al., Planet. Space Sci., 22, 255 (1974).ADSCrossRefGoogle Scholar
  3. 3.
    A. Nishida, Geomagnetic Diagnosis of the Magnetosphere, Springer-Verlag, New York, Heidelberg, Berlin (1978).CrossRefGoogle Scholar
  4. 4.
    E. S. Kazimirovsky, Ann. Geophys., 45, No. 1, 1 (2002).Google Scholar
  5. 5.
    G. F. Earl and D. Ward, Radio Sci., 22, No. 2, 275 (1987).ADSCrossRefGoogle Scholar
  6. 6.
    N. M. Boguta, V.A. Ivanov, Yu.V.Noga, et al., Radiotekhnika, No. 4, 77 (1993).Google Scholar
  7. 7.
    S.N.Ponomarchuk, V. I. Kurkin, and M. S. Penzin, Sol.-Zemn. Fizika, 3, No. 3, 61 (2017).CrossRefGoogle Scholar
  8. 8.
    G. Lane, in: Proc. Ionospheric Effects Symposium. Alexandria, USA, 3–5 May, 2005, p. 280.Google Scholar
  9. 9.
    J. M. Goodman, J. W. Ballard, J.D. Patterson, and B. Gaffney, Radio Sci., 41, No. 6, RS6S41 (2006).CrossRefGoogle Scholar
  10. 10.
    V. A. Ivanov, N.V.Ryabova, V.V. Shumaev, and V. P. Uryadov, Radio Sci., 32, No. 3, 983 (1997).ADSCrossRefGoogle Scholar
  11. 11.
    V.P. Uryadov, F. I. Vybornov, and A. V. Pershin, Radiophys. Quantum Electron., 61, No. 12, 867 (2919).ADSCrossRefGoogle Scholar
  12. 12.
    L. S. Wagner, J.A.Goldstein, M.A.Rupar, and E. J. Kennedy, Radio Sci., 30, No. 3, 659 (1995).ADSCrossRefGoogle Scholar
  13. 13.
    M. J. Angling, P. S. Cannon, N.C. Davies, et al., Radio Sci., 33, No. 1, 97 (1998).ADSCrossRefGoogle Scholar
  14. 14.
    S. E. Milan, M. Lester, T.B. Jones, and E.M.Warrington, J. Atmos. Solar-Terr. Phys., 60, 617 (1998).ADSCrossRefGoogle Scholar
  15. 15.
    V.P. Uryadov, V. I. Kurkin, G.G.Vertogradov, et al., Radiophys. Quantum Electron., 47, No. 12, 933 (2004).ADSCrossRefGoogle Scholar
  16. 16.
    V.P. Uryadov, F. I. Vybornov, A.A.Kolchev, et al., Adv. Space Res., 61, No. 7, 1837 (2018).ADSCrossRefGoogle Scholar
  17. 17.
  18. 18.
  19. 19.
    W. D. Gonzalez, J. A. Joselyn, Y. Kamide, et al., J. Geophys. Res., 99, No. A4, 5771 (1994).ADSCrossRefGoogle Scholar
  20. 20.
    A. D. Danilov, Geliogeofiz. Issled., No. 5, 1 (2013).Google Scholar
  21. 21.
    http://www.sgo.fi, 22.01.2019 .
  22. 22.
    A. D. Danilov and L. D. Belik, Geomagn. Aéron., 31, No. 2, 209 (1991).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • V. P. Uryadov
    • 1
    • 2
  • F. I. Vybornov
    • 1
    Email author
  • A. V. Pershin
    • 1
  1. 1.Radiophysical Research InstituteN. I. Lobachevsky State University of Nizhny NovgorodNizhny NovgorodRussia
  2. 2.Polyot, a research and production enterpriseNizhny NovgorodRussia

Personalised recommendations