Advertisement

Radiophysics and Quantum Electronics

, Volume 61, Issue 11, pp 834–840 | Cite as

Nonlinear Dynamics of an Antiferromagnetic Spintronic Oscillator

  • A. R. SafinEmail author
  • S. A. Nikitov
Article
  • 25 Downloads

We study nonlinear dynamics of the spintronic nanosized antiferromagnetic terahertz oscillator consisting of an antiferromagnetic layer with easy-plane anisotropy (hematite) and a normal-metal (platinum) layer. Normal oscillation frequencies, namely, ferromagnetic and antiferromagnetic (terahertz) ones, are found. Their dependence on the value of a static magnetic field parallel to the sample plane is obtained. An approximate mathematical model in the form of the equations for the Néel-vector rotation angle in the azimuthal plane is developed for describing the oscillator dynamics. The adjustment characteristic, i.e., the dependence of the antiferromagnetic-mode frequency on the value of the direct current flowing in the platinum layer is obtained.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Sirtori, Nature, 417, 132 (2002).ADSCrossRefGoogle Scholar
  2. 2.
    R. Kleiner, Science, 318, No. 5854, 1254 (2007).CrossRefGoogle Scholar
  3. 3.
    E. A. Nanni, W.R.Huang, K.-H. Hong, et al., Nat. Commun., 6, No. 8486, 1 (2015).Google Scholar
  4. 4.
    H.-W. Hubers, Nat. Photon., 4, 503 (2010).ADSCrossRefGoogle Scholar
  5. 5.
    L. Ozyuzer, A. E. Koshelev, C. Kurter, et al., Science, 318, No. 5854, 1291 (2007).ADSCrossRefGoogle Scholar
  6. 6.
    M. Tonouchi, Nat. Photon., 1, 97 (2007).ADSCrossRefGoogle Scholar
  7. 7.
    Yu.V.Gulyaev, P. E. Zilberman, G. M. Mikhailov, and S.G.Chigarev, JETP Lett., 98, No. 11, 742 (2013).ADSCrossRefGoogle Scholar
  8. 8.
    A. M. Kalashnikova, A.V.Kimel, and R. V. Pisarev, Physics—Uspekhi, 58, No. 2, 969 (2015).ADSGoogle Scholar
  9. 9.
    T. Jungwirth, X. Marti, P. Wadley, et al., Nat. Nanotech., 11, 231 (2016).ADSCrossRefGoogle Scholar
  10. 10.
    E.V.Gomonay and V.M. Loktev, Low Temp. Phys., 40, No. 1, 17 (2014).ADSCrossRefGoogle Scholar
  11. 11.
    V. Baltz, A. Manchon, M. Tsoi, et al., Rev. Mod. Phys., 90, No. 1, 015005 (2018).ADSCrossRefGoogle Scholar
  12. 12.
    O. Johansen, H. Skarsvag, and A. Brataas, Phys. Rev. B, 97, No. 5, 054423 (2018).ADSCrossRefGoogle Scholar
  13. 13.
    R. Khymyn, I. Lisenkov, V. Tiberkevich, et al., Sci. Rep., 7, 43705 (2017).ADSCrossRefGoogle Scholar
  14. 14.
    R. Cheng, J. Xiao, Q. Niu, et al., Phys. Rev. Lett., 113, No. 5, 057601 (2014).ADSCrossRefGoogle Scholar
  15. 15.
    R. Cheng, J. Xiao, and A. Brataas, Phys. Rev. Lett., 116, No. 20, 207603 (2016).ADSCrossRefGoogle Scholar
  16. 16.
    O. Sulymenko, O. Prokopenko, V. Tiberkevich, et al., Phys. Rev. Appl., 8, No. 6, 064007 (2017).ADSCrossRefGoogle Scholar
  17. 17.
    T. Jungwirth, J. Wunderlich, and K. Olejnik, Nat. Mat., 11, 382 (2012).CrossRefGoogle Scholar
  18. 18.
    T. Moriya, Phys. Rev., 120, No. 1, 91 (1960).ADSCrossRefGoogle Scholar
  19. 19.
    I.E. Dzialoshinskii, Sov. Phys. JETP, 5, No. 6, 1259 (1957).Google Scholar
  20. 20.
    P. W. Anderson, F.R.Merritt, J.P.Remeika, et al., Phys. Rev., 93, No. 4, 717 (1954).ADSCrossRefGoogle Scholar
  21. 21.
    H. Kumagai, H. Abe, K. Ôno, et al., Phys. Rev., 99, No. 4, 1116 (1955). ADSCrossRefGoogle Scholar
  22. 22.
    E. A. Turov, A. V. Kolchanov, V. V. Men’shenin, et al., Symmetry and Physical Properties of Antiferromagnets [in Russian], Fizmatlit, Moscow (2001).Google Scholar
  23. 23.
    L. V. Velikov and E.G.Rudashevskii, Sov. Phys. JETP, 29, No. 5, 836 (1969).ADSGoogle Scholar
  24. 24.
    V. I. Ozhogin and V.G. Shapiro, Sov. Phys. JETP, 28, No. 5, 915 (1969).ADSGoogle Scholar
  25. 25.
    M. I. Rabinovich and D. I. Trubetskov, Oscillations and Waves in Linear and Nonlinear Systems Kluwer, Dordrecht (1989).Google Scholar
  26. 26.
    K.K. Likharev, Introduction to the Dynamics of Josephson Junctions [in Russian], Nauka, Moscow (1985).Google Scholar
  27. 27.
    M. V. Kapranov, V. N. Kuleshov, and G.M.Utkin, Theory of Oscillations in Radio Engineering [in Russian], Nauka, Moscow (1984).Google Scholar
  28. 28.
    N. N. Bogolyubov and Yu. A. Mitropol’sky, Asymptotic Methods in the Theory of Nonlinear Oscillations [in Russian], Fizmatlit, Moscow (1963).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Moscow Energy InstituteMoscowRussia
  2. 2.V. A. Kotel’nikov Institute of Radio Engineering and Electronics of the Russian Academy of SciencesMoscowRussia

Personalised recommendations