Radiophysics and Quantum Electronics

, Volume 61, Issue 11, pp 806–833 | Cite as

Spectral-Dynamical Peculiarities of Polarization of the Active Medium and Space-Time Empirical Modes of a Laser with a Low-Q Cavity

  • E. P. KocharovskayaEmail author
  • A. S. Gavrilov
  • V. V. Kocharovsky
  • E.M. Loskutov
  • A. V. Mishin
  • D.N. Mukhin
  • A. F. Seleznev
  • Vl. V. Kocharovsky

We have found a set of correlation effects, which are due to the inherent dynamics of the spectral density of polarization of an active medium with strong inhomogeneous broadening of the working transition line and occur if the rate of incoherent relaxation of optical dipole oscillations of the active centers is lower than the rate of optical-field attenuation in the laser cavity. Our analysis is based on the numerical studies of the stationary superradiant laser generation during continuous pumping with self-locking of some of the quasistationary modes. For the purposes of studying the detected effects, the methods of comparative analysis of the dynamic spectra of polarization and the field have been developed. In these methods, the time-frequency and space-time empirical modes of the spectra are used, which are determined by orthogonal eigenfunctions of special correlation matrices. The interconnection of the superradiance phenomena and mode self-locking in the considered class of lasers with low-Q cavities is discussed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ya. I. Khanin, Fundamentals of Laser Dynamics, Cambridge Int. Sci. Publ. Ltd., Cambridge (2006).Google Scholar
  2. 2.
    F.T. Arecchi and R.G.Harrison, Instabilities and Chaos in Quantum Optics, Springer, London (2011).Google Scholar
  3. 3.
    A. E. Siegman, Lasers, Univ. Science Books, Mill Valley, CA (1986).Google Scholar
  4. 4.
    L. Lugiato, F. Prati, and M. Brambilla, Nonlinear Optical Systems, Cambridge Univ. Press (2015).Google Scholar
  5. 5.
    C. O. Weiss, Instabilities and Chaos in Quantum Optics II, Plenum Press, New York (1988).Google Scholar
  6. 6.
    E. Roldan, G. J. de Varcarcel, F. Prati, et al., in: Trends in Spatiotemporal Dynamics in Laser. Instabilities, Polarization Dynamics, and Spatial Structures, Research Signpost, Trivandrum, (2005), p. 1.Google Scholar
  7. 7.
    L. Mandel and E. Wolf, Optical Coherence and Quantum Optics, Cambridge Univ. Press (1995).Google Scholar
  8. 8.
    Vl. V. Kocharovsky, A. A. Belyanin, E.R.Kocharovskaya, and V.V.Kocharovsky, in: Advanced Lasers: Laser Physics and Technology for Applied and Fundamental Science, Springer Ser. in Optical Sciences, 193, 49 (2015).Google Scholar
  9. 9.
    A. A. Belyanin, V. V. Kocharovsky, and Vl. V. Kocharovsky, Quantum Semiclass. Opt. (J. Eur. Opt. Soc. B), 9, No. 1, 1 (1997).ADSCrossRefGoogle Scholar
  10. 10.
    D. Scherrer and F. Kneubehl, Infrared Phys., 34, 227 (1993).ADSCrossRefGoogle Scholar
  11. 11.
    A. Kumarakrishnan and X. L. Han, Phys. Rev. A, 58, 4153 (1998).ADSCrossRefGoogle Scholar
  12. 12.
    A. Kumarakrishnan, S. Chudasama, and X. J. Han, Opt. Soc. Am. B, 22, 1538 (2005).ADSCrossRefGoogle Scholar
  13. 13.
    J. A. Greenberg and D. J. Gauthier, Phys. Rev. A, 86, 013823 (2012).ADSCrossRefGoogle Scholar
  14. 14.
    J. G. Bohnet, Z. Chen, J.M.Weiner, et al., Nature, 484, 78 (2012).ADSCrossRefGoogle Scholar
  15. 15.
    J.M.Weiner, K.C.Cox, J.G.Bohnet, and J.K.Thompson, Phys. Rev. A, 95, 033808 (2017).ADSCrossRefGoogle Scholar
  16. 16.
    M. A. Norcia and J.K.Thompson, Phys. Rev. X, 6, 011025 (2016).Google Scholar
  17. 17.
    M. A. Norcia, M.N.Winchester, J. R.K.Cline, and J.K.Thompson, Sci. Adv., 2, e1601231 (2016).ADSCrossRefGoogle Scholar
  18. 18.
    T. S. Mansuripur, C. Vernet, P. Chevalier, et al., Phys. Rev. A, 94, 063807 (2016).ADSCrossRefGoogle Scholar
  19. 19.
    N. N. Vukovic, J. Radovanovic, V. Milanovic, and D. L. Boiko, IEEE J. Sel. Top. Quantum Electron., 23, 1200616 (2017).CrossRefGoogle Scholar
  20. 20.
    N. Vukovic, J. Radovanovic, V. Milanovic, and D. L. Boiko, Opt. Express, 24, 26911 (2016).ADSCrossRefGoogle Scholar
  21. 21.
    M. Scheibner, T. Schmidt, L. Worschech, et al., Nature Physics, 3, 106 (2007).ADSCrossRefGoogle Scholar
  22. 22.
    D. C. Dai and A.P.Monkman, Phys. Rev. B, 84, 115206 (2011).ADSCrossRefGoogle Scholar
  23. 23.
    C. R. Ding, Z. L. Li, Z. R. Qiu, et al., Appl. Phys. Lett., 101, 091115 (2012).ADSCrossRefGoogle Scholar
  24. 24.
    G. Pozina, M.A.Kaliteevski, E. V. Nikitina, et al., Sci. Rep., 5, 14911 (2015).ADSCrossRefGoogle Scholar
  25. 25.
    G. Pozina, M.A.Kaliteevski, E. V. Nikitina, et al., Phys. Status Solidi B, 254, 1600402 (2017).ADSCrossRefGoogle Scholar
  26. 26.
    Y. D. Jho, X. Wang, J. Kono, et al., Phys. Rev. Lett., 96, 237401 (2006).ADSCrossRefGoogle Scholar
  27. 27.
    Y. D. Jho, X. Wang, D.H.Reitze, et al., Phys. Rev. B, 81, 155314 (2010).ADSCrossRefGoogle Scholar
  28. 28.
    K. Cong, Y. Wang, J.-H.Kim, et al., Phys. Rev. B, 91, 235448 (2015).ADSCrossRefGoogle Scholar
  29. 29.
    G.T. Noe (II), J.-H.Kim, J. Lee, et al., Nature Phys., 8, 219 (2012).Google Scholar
  30. 30.
    G.T. Noe (II), J.-H.Kim, J. Lee, et al., Fortschr. Phys., 61, 393 (2013).Google Scholar
  31. 31.
    J.-H.Kim, G.T.Noe (II), S.A.McGill, et al., Sci. Rep., 3, 3283 (2013).Google Scholar
  32. 32.
    R. Florian, L. Schwan, and D. Schmid, Phys. Rev. A, 29, 2709 (1984).ADSCrossRefGoogle Scholar
  33. 33.
    M. S. Malcuit, J. J. Maki, D. J. Simkin, and R.W.Boyd, Phys. Rev. Lett., 59. 1189 (1987).ADSCrossRefGoogle Scholar
  34. 34.
    O.P.Varnavskii, A. N. Kirkin, A.M. Leontovich, et al., J. Exp. Theor. Phys., 59, 716 (1984).Google Scholar
  35. 35.
    K. Miyajima, Y. Kagotani, S. Saito, et al., J. Phys. Condens. Matter., 21, 195802 (2009).ADSCrossRefGoogle Scholar
  36. 36.
    K. Miyajima, K. Maeno, S. Saito, et al., Phys. Status Solidi C, 8, 209 (2011).ADSCrossRefGoogle Scholar
  37. 37.
    L. Phuong, K. Miyajima, K. Maeno, et al., J. Lumin., 133, 77 (2013).CrossRefGoogle Scholar
  38. 38.
    P. Tighineanu, R. S. Daveau, T. B. Lehmann, et al., Phys. Rev. Lett., 116, 163604 (2016).ADSCrossRefGoogle Scholar
  39. 39.
    F. Meinardi, M. Cerminara, A. Sassella, et al., Phys. Rev. Lett., 91, 247401 (2003).ADSCrossRefGoogle Scholar
  40. 40.
    G. Lanzani, The Photophysics behind Photovoltaics and Photonics, John Wiley & Sons, New York (2012), p. 47.CrossRefGoogle Scholar
  41. 41.
    D. H. Arias, K. W. Stone, S. M. Vlaming, et al., J. Phys. Chem. B, 117, 4553 (2013).CrossRefGoogle Scholar
  42. 42.
    G. M. Akselrod, E.R.Young, K.W. Stone, et al., Phys. Rev. B, 90, 035209 (2014).ADSCrossRefGoogle Scholar
  43. 43.
    S.-H. Lim, T.G.Bjorklund, F. C. Spano, and C. J. Bardeen, Phys. Rev. Lett., 92, 107402 (2004).ADSCrossRefGoogle Scholar
  44. 44.
    V. V. Kocharovsky, V. V. Zheleznyakov, E.R.Kocharovskaya, and V.V.Kocharovsky, Phys. Usp., 60, 345 (2017).ADSCrossRefGoogle Scholar
  45. 45.
    C.O.Weiss, R. Vilasecar, N. B. Abraham, et al., Appl. Phys. B, 61, 223 (1995).ADSCrossRefGoogle Scholar
  46. 46.
    P. Chenkosol and L.W. Casperson, J. Opt. Soc. Am. B, 24, 1199 (2007).ADSCrossRefGoogle Scholar
  47. 47.
    P. Chenkosol and L.W. Casperson, J. Opt. Soc. Am. B, 20, 2539 (2003).ADSCrossRefGoogle Scholar
  48. 48.
    M. Tarroja, H. Fe, M. Sharafi, and L.W.Casperson, J. Opt. Soc. Am. B, 6, 1564 (1989).ADSCrossRefGoogle Scholar
  49. 49.
    J. L. Font, R. Vilaseca, F. Prati, and E. Roldan, Opt. Commun., 261, 336 (2006).ADSCrossRefGoogle Scholar
  50. 50.
    J. Jahanpanah and H. R. Eslami, Opt. Commun., 293, 102 (2013).ADSCrossRefGoogle Scholar
  51. 51.
    L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Dover Books on Physics), Dover Publ. (1987).Google Scholar
  52. 52.
    R. H. Pantell and H.E. Puthoff, Fundamentals of Quantum Electronics Wiley, New York (1969).Google Scholar
  53. 53.
    Vl. V. Kocharovsky, P. A. Kalinin, E. R. Kocharovskaya, and V. V. Kocharovsky, in: Nonlinear Waves 2012 [in Russian], Inst. Appl. Phys., Nizhny Novgorod (2013), p. 398.Google Scholar
  54. 54.
    A. A. Kharkevich, Spectra and Analysis [in Russian], Librokom, Moscow (2009).Google Scholar
  55. 55.
    S.A.Akhmanov, Yu. E. Dyakov, and A. S. Chirkin, Introduction to Statistical Radiophysics and Optics [in Russian], Nauka, Moscow (1981).Google Scholar
  56. 56.
    Vl. V. Kocharovsky, M. A. Garasyov, P. A. Kalinin, and E. R. Kocharovskaya, in: Proc. II Symp. on Coherent Optical Radiation of Semiconductor Compounds and Structures, November 16–18, 2009, Moscow–Zvenigorod, p. 68.Google Scholar
  57. 57.
    I. L. Krestnikov, N.N. Ledentsov, A. Hofmann, and D. Bimberg, Phys. Stat. Sol. A, 183, 207 (2001).ADSCrossRefGoogle Scholar
  58. 58.
    P. Qiao, C.-Y. Lu, D. Bimberg, and S. L. Chuang, Optics Express, 21, 30336 (2013).ADSCrossRefGoogle Scholar
  59. 59.
    H. Kogelnik and C.V. Shank, J. Appl. Phys., 43, No. 5, 2327 (1972).ADSCrossRefGoogle Scholar
  60. 60.
    D. C. Flanders, H. Kogelnik, C.V. Shank, and R.D. Stanley, Appl. Phys. Lett., 25, 651 (1974).ADSCrossRefGoogle Scholar
  61. 61.
    L. Zhu, A. Scherer, and A. Yariv, IEEE J. Quantum Electron., 43, 934 (2007).ADSCrossRefGoogle Scholar
  62. 62.
    A. Mock, L. Lu, E. Y. Hwang, et al., IEEE J. Sel. Top. Quantum Electron., 15, 892 (2009).ADSCrossRefGoogle Scholar
  63. 63.
    S. Akiba, Encyclopedic Handbook of Integrated Optics, CRC Press-Taylor & Francis Group, Boca Raton (2005), p. 41.Google Scholar
  64. 64.
    S.K.Turitsyn, S.A.Babin, D.V.Churkin, et al., Physics Reports, 542, 133 (2014).ADSCrossRefGoogle Scholar
  65. 65.
    S. Wang, IEEE J. Quantum Electron., 10, 413 (1974).ADSCrossRefGoogle Scholar
  66. 66.
    E. R. Kocharovskaya, N. S. Ginzburg, A. S. Sergeev, et al., Radiophys. Quantum Electron., 59, No. 6, 484 (2016).ADSCrossRefGoogle Scholar
  67. 67.
    V. V. Zheleznyakov, V. V. Kocharovsky, and Vl. V. Kocharovsky, Phys. Usp., 32, No. 10, 835 (1989).ADSCrossRefGoogle Scholar
  68. 68.
    V. V. Kocharovsky, Vl. V. Kocharovsky, and E.R.Golubyatnikova, Computers Math. Applic., 34, 773 (1997).Google Scholar
  69. 69.
    P. A. Kalinin, V.V.Kocharovsky, and Vl. V. Kocharovsky, Semiconductors, 46, No. 11, 1351 (2012).ADSCrossRefGoogle Scholar
  70. 70.
    E. R. Kocharovskaya, N. S. Ginzburg, and A. S. Sergeev, Quantum Electron., 41, 722 (2011).ADSCrossRefGoogle Scholar
  71. 71.
    N. S. Ginzburg, E.R.Kocharovskaya, and A. S. Sergeev, Bull. Rus. Acad. Sci. Phys., 72, 26 (2008).Google Scholar
  72. 72.
    N. S. Ginzburg, E.R.Kocharovskaya, and A. S. Sergeev, Bull. Rus. Acad. Sci. Phys., 74, 04 (2010).Google Scholar
  73. 73.
    A. M. Nadtochiy, S. A. Mintairov, N. A. Kalyuzhny, et al., Semiconductors, 52, 53 (2018).ADSCrossRefGoogle Scholar
  74. 74.
    A. Yariv and P. Yeh, Optical Waves and Crystals: Propagation and Control of Laser Radiation, Wiley, New York (2003).Google Scholar
  75. 75.
    V. V. Kocharovsky and Vl. V. Kocharovsky, Radiophys. Quantum Electron., 44, Nos. 5–6, 443 (2001).Google Scholar
  76. 76.
    R. M. Arkhipov, M.V.Arkhipov, and I.V.Babushkin, JETP Lett., 101, No. 3, 149 (2015).ADSCrossRefGoogle Scholar
  77. 77.
    M. V. Arkhipov, R.M.Arkhipov, A. A. Shimko, and I.V.Babushkin, JETP Lett., 101, No. 4, 32 (2015).CrossRefGoogle Scholar
  78. 78.
    R.M.Arkhipov, M.V.Arkhipov, and I.V.Babushkin, Optics Commun., 361, 73 (2016).ADSCrossRefGoogle Scholar
  79. 79.
    I. Jollife, Principal Component Analysis, Springer, New York (1986).CrossRefGoogle Scholar
  80. 80.
    A. Navarra and V. Simoncini, A Guide to Empirical Orthogonal Functions for Climate Data Analysis, Springer Science+Business Media B. V., Dordrecht (2010).Google Scholar
  81. 81.
    D. Mukhin, D. Kondrashov, E. Loskutov, et al., J. Climate, 28, 1962 (2015).ADSCrossRefGoogle Scholar
  82. 82.
    A. Hannachi, I.T. Jolliffe, and D.B. Stephenson, Int. J. Climatol., 27, 1119 (2007).CrossRefGoogle Scholar
  83. 83.
    J. D. Horel, J. Climate Appl. Meteor., 23, 1660 (1984).ADSCrossRefGoogle Scholar
  84. 84.
    M. Ghil, M. R. Allen, M. D. Dettinger, et al., Rev. Geophys., 40, 3-1-3-41 (2002).CrossRefGoogle Scholar
  85. 85.
    G. Plaut and R. Vautard, J. Atmos. Sci., 51, 210 (1994).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • E. P. Kocharovskaya
    • 1
    • 2
    Email author
  • A. S. Gavrilov
    • 1
  • V. V. Kocharovsky
    • 1
    • 3
  • E.M. Loskutov
    • 1
  • A. V. Mishin
    • 1
  • D.N. Mukhin
    • 1
  • A. F. Seleznev
    • 1
  • Vl. V. Kocharovsky
    • 1
    • 2
  1. 1.Institute of Applied Physics of the Russian Academy of SciencesNizhny NovgorodRussia
  2. 2.N. I. Lobachevsky State University of Nizhny NovgorodNizhny NovgorodRussia
  3. 3.Texas A&M UniversityCollege StationUSA

Personalised recommendations