Radiophysics and Quantum Electronics

, Volume 61, Issue 11, pp 797–800 | Cite as

Experimental Demonstration of the Possibility to Expand the Band of Smooth Tuning of Frequency Generation in Short-Cavity Gyrotrons

  • M. Yu. Glyavin
  • A. E. Fedotov
  • I. V. Zotova
  • A. G. Luchinin
  • M. D. Proyavin
  • R. M. RozentalEmail author
  • V. P. Tarakanov

We show experimentally the possibility to expand significantly the band of smooth tuning of the generation frequency in gyrotrons using cavities that have shorter lengths. Due to a decrease in the sensitivity of the electron-wave interaction process to the spread in the electron beam velocities, one can increase the power of generation at higher longitudinal modes up to a level comparable with the radiation power in the case of excitation of a mode with one longitudinal variation. In this case, overlapping of generation bands at the neighboring longitudinal modes is achieved by increasing the current of the electron beam. In the experiment performed in a gyrotron having an operating frequency of about 12 GHz, we demonstrated a frequency tuning band which exceeded 4% at the kilowatt level of the output radiation power in its greater part. The obtained results open up the possibility of developing tunable high-frequency moderate-power gyrotrons.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Darbos, F. Albajar, T. Bonicelli, et al., J. Infrared, Millim. THz Waves, 37, 1, 4 (2016).Google Scholar
  2. 2.
    S. S. Dhillon, M. S. Vitiello, E. H. Linfield, et al., J. Phys. D: Appl. Phys., 50, 4, 043001 (2017).ADSCrossRefGoogle Scholar
  3. 3.
    A. Miyazaki, T. Yamazaki, T. Suehara, et al., J. Infrared, Millim. THz Waves, 35, 1, 91 (2014).Google Scholar
  4. 4.
    M. A. Koshelev, A. I. Tsvetkov, M. V. Morozkin, et al., J. Molec. Spectr., 331, 9 (2007).ADSCrossRefGoogle Scholar
  5. 5.
    T. H. Chang, T. Idehara, I. Ogawa, et al., J. Appl. Phys., 105, 6, 063304 (2009).ADSCrossRefGoogle Scholar
  6. 6.
    A. C. Torrezan, S.-T. Han, I. Mastovsky, et al., IEEE Trans. Plasma Sci., 38, 6, 1150 (2010).ADSCrossRefGoogle Scholar
  7. 7.
    A. B. Barnes, E. A. Nanni, J. Hertzfeld, et al., J. Magn. Resonance, 221, 147 (2012).ADSCrossRefGoogle Scholar
  8. 8.
    J. Zhao, G. S. Nusinovich, H. Guo, et al., IEEE Trans. Plasma Sci., 28, 3, 597 (2000).ADSCrossRefGoogle Scholar
  9. 9.
    V. L. Bratman, N. S. Ginzburg, G. S. Nusinovich, et al., Int. J. Electron., 51, No. 4, 541 (1981).CrossRefGoogle Scholar
  10. 10.
    M. I. Petelin, in: Gyrotron [in Russian], Inst. Appl. Phys., Gorky (1981), p. 5.Google Scholar
  11. 11.
    A. E. Fedotov, R. M. Rozental, I. V. Zotova, et al., J. Infrared, Millimeter, and THz Waves, 39, 10, 975 (2018).Google Scholar
  12. 12.
    Yu. Bykov, A. Eremeev, M. Glyavin, et al., IEEE Trans. Plasma Sci., 32, 1, 67 (2004).ADSCrossRefGoogle Scholar
  13. 13.
    G. S. Nusinovich and R. E. Érm, Elektron. Tekhn., Ser. I, Electron. SVCh, No. 8, 55 (1972).Google Scholar
  14. 14.
    V. L. Bratman, M. A. Moiseev, M. I. Petelin, and R. É. Érm, Radiophys. Quantum Electron., 16, No. 4, 474 (1973).ADSCrossRefGoogle Scholar
  15. 15.
    A. V. Gaponov, V. A. Flyagin, A. L. Gol’denberg, et al., Int. J. Electron., 51, 4, 277 (1981).CrossRefGoogle Scholar
  16. 16.
    V. P. Tarakanov, EPJ Web of Conferences, 149, 04024 (2017).CrossRefGoogle Scholar
  17. 17.
    A. C. Torrezan, M. A. Shapiro, J. R. Sirigiri, et al., IEEE Trans. Electron. Dev., 58, 8, 2777 (2011).ADSCrossRefGoogle Scholar
  18. 18.
    X.-B. Qi, C.-H. Du, S. Pan, et al., IEEE Trans. Electron. Dev., 64, No. 2, 527 (2017).ADSCrossRefGoogle Scholar
  19. 19.
    V. E. Zapevalov, G. S. Korablyov, and Sh. E. Tsimring, Radiotekh. Élektron., 22, No. 8, 1661 (1977).ADSGoogle Scholar
  20. 20.
    G. Yu. Golubyatnikov, A. F. Krupnov, L. V. Lubyako, et al., Tech. Phys. Lett., 32, No. 18, 650 (2006).ADSCrossRefGoogle Scholar
  21. 21.
    A. Fokin, M. Glyavin, G. Golubiatnikov, et al., Scientific Reports, 8, 4317 (2018).ADSCrossRefGoogle Scholar
  22. 22.
    A. A. Bogdashov, M. Yu. Glyavin, R. M. Rozental’, et al., Tech. Phys. Lett., 44, No. 3, 221 (2018).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • M. Yu. Glyavin
    • 1
  • A. E. Fedotov
    • 1
  • I. V. Zotova
    • 1
  • A. G. Luchinin
    • 1
  • M. D. Proyavin
    • 1
  • R. M. Rozental
    • 1
    Email author
  • V. P. Tarakanov
    • 2
    • 3
  1. 1.Institute of Applied Physics of the Russian Academy of SciencesNizhny NovgorodRussia
  2. 2.National Research Nuclear University MEPhIMoscowRussia
  3. 3.Joint Institute for High Temperatures of the Russian Academy of SciencesMoscowRussia

Personalised recommendations